skip to main content

The Association Between Intake of Saturated, Monounsaturated, and Polyunsaturated Fatty Acids with Bifidobacterium Abundance Among Obese Adults Without Metabolic Syndrome

1Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Indonesia

2Department of Clinical Microbiology, Faculty of Medicine, Universitas Diponegoro, Indonesia

Received: 16 Apr 2025; Accepted: 14 Aug 2025; Available online: 31 Aug 2025; Published: 31 Aug 2025.
Open Access Copyright (c) 2025 Journal of Biomedicine and Translational Research
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Background: Bifidobacterium is a key gut microbe that contributes to host metabolism, immunity, and intestinal integrity through SCFA production. Dietary fats are known to modulate gut microbiota, but evidence on the effects of specific fat types—SFA, MUFA, PUFA—on Bifidobacterium in obese adults without metabolic syndrome remains limited.

Objectives: To examine the association between intake of dietary fat types and the abundance of Bifidobacterium among obese adults without metabolic syndrome.

Methods: A cross-sectional study was conducted in Semarang, Indonesia, involving 60 obese adults (BMI ≥ 25 kg/m²) without metabolic syndrome. Dietary intake was assessed using a validated SQ-FFQ, and Bifidobacterium abundance was quantified using qPCR from fecal samples. Correlation and multivariate linear regression - adjusted for age, sex, and energy intake - were used to assess associations between variables.

Results: Saturated fat intake was moderately and negatively correlated with Bifidobacterium levels (r = –0.464; p < 0.001), while total fat intake also showed a statistically significant, but weaker, negative correlation (r = –0.346; p = 0.007). PUFA intake showed a weak but statistically significant positive correlation (r = 0.269; p = 0.037), whereas MUFA intake was not significantly associated. Multivariate analysis identified SFA as an independent negative predictor of Bifidobacterium abundance.

Conclusion: High intake of saturated fat is associated with decreased Bifidobacterium levels even in obese adults without metabolic syndrome, whereas PUFA may exert modest protective effects. These findings suggest that the type of dietary fat, rather than its quantity, plays a key role in modulating gut microbiota composition.

Note: This article has supplementary file(s).

Fulltext |  Cover Letter
Cover letter
Subject
Type Cover Letter
  Download (15KB)    Indexing metadata
Keywords: Saturated Fats, MUFA, PUFA, Bifidobacterium, Obesity

Article Metrics:

  1. Van Hul M, Cani PD, Petitfils C, De Vos WM, Tilg H, El-Omar EM. What defines a healthy gut microbiome? Gut. 2024;73(11):1893-1908. doi: 10.1136/gutjnl-2024-333378
  2. Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50(8):1-9. doi: 10.1038/s12276-018-0126-x
  3. Martel J, Chang SH, Ko YF, Hwang TL, Young JD, Ojcius DM. Gut barrier disruption and chronic disease. Trends in Endocrinology & Metabolism. 2022;33(4):247-265. doi: 10.1016/j.tem.2022.01.002
  4. Danneskiold-Samsøe NB, Dias de Freitas Queiroz Barros H, Santos R, et al. Interplay between food and gut microbiota in health and disease. Food Research International. 2019;115:23-31. doi: 10.1016/j.foodres.2018.07.043
  5. Alessandri G, van Sinderen D, Ventura M. The genus Bifidobacterium: from genomics to functionality of an important component of the mammalian gut microbiota. Comput Struct Biotechnol J. 2021;19:1472-1487. doi: 10.1016/j.csbj.2021.03.006
  6. Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Martinez JA. Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. In: Advances in Nutrition. Vol 10. Oxford University Press; 2019:S17-S30. doi: 10.1093/advances/nmy078
  7. Lee HK, Kim NE, Shin CM, et al. Gut microbiome signature of metabolically healthy obese individuals according to anthropometric, metabolic and inflammatory parameters. Sci Rep. 2024;14(1). doi: 10.1038/s41598-024-53837-z
  8. Gaundal L, Myhrstad MCW, Rud I, et al. Gut microbiota is associated with dietary intake and metabolic markers in healthy individuals. Food Nutr Res. 2022;66. doi: 10.29219/fnr.v66.8580
  9. Phillips CM. Metabolically healthy obesity across the life course: epidemiology, determinants, and implications. Ann N Y Acad Sci. 2017;1391(1):85-100. doi: 10.1111/nyas.13230
  10. Moszak M, Szulińska M, Bogdański P. You Are What You Eat—The Relationship between Diet, Microbiota, and Metabolic Disorders—A Review. Nutrients. 2020;12(4):1096. doi: 10.3390/nu12041096
  11. Kim B, Choi HN, Yim JE. Effect of diet on the gut microbiota associated with obesity. J Obes Metab Syndr. 2019;28(4):216-224. doi: 10.7570/JOMES.2019.28.4.216
  12. Alcock J, Lin HC. Fatty acids from diet and microbiota regulate energy metabolism. F1000Res. 2015;4:738. doi: 10.12688/f1000research.6078.1
  13. Wolters M, Ahrens J, Romaní-Pérez M, et al. Dietary fat, the gut microbiota, and metabolic health – A systematic review conducted within the MyNewGut project. Clinical Nutrition. 2019;38(6):2504-2520. doi: 10.1016/j.clnu.2018.12.024
  14. Haneishi Y, Furuya Y, Hasegawa M, et al. Polyunsaturated fatty acids-rich dietary lipid prevents high fat diet-induced obesity in mice. Sci Rep. 2023;13(1). doi: 10.1038/s41598-023-32851-7
  15. Tutunchi H, Ostadrahimi A, Saghafi-Asl M. The Effects of Diets Enriched in Monounsaturated Oleic Acid on the Management and Prevention of Obesity: a Systematic Review of Human Intervention Studies. Advances in Nutrition. 2020;11(4):864-877. doi: 10.1093/advances/nmaa013
  16. Liu W, Zhu M, Gong M, et al. Comparison of the Effects of Monounsaturated Fatty Acids and Polyunsaturated Fatty Acids on Liver Lipid Disorders in Obese Mice. Nutrients. 2023;15(14):3200. doi: 10.3390/nu15143200
  17. Basak S, Banerjee A, Pathak S, Duttaroy AK. Dietary Fats and the Gut Microbiota: Their impacts on lipid-induced metabolic syndrome. J Funct Foods. 2022;91:105026. doi: 10.1016/j.jff.2022.105026
  18. Machate DJ, Figueiredo PS, Marcelino G, et al. Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. Int J Mol Sci. 2020;21(11):4093. doi: 10.3390/ijms21114093
  19. Jayapala HPS, Lim SY. N-3 Polyunsaturated Fatty Acids and Gut Microbiota. Comb Chem High Throughput Screen. 2023;26(5):892-905. doi: 10.2174/1386207325666220701121025
  20. Meslier V, Laiola M, Roager HM, et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut. 2020;69(7):1258-1268. doi: 10.1136/gutjnl-2019-320438
  21. Durazzi F, Sala C, Castellani G, Manfreda G, Remondini D, De Cesare A. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci Rep. 2021;11(1):3030. doi: 10.1038/s41598-021-82726-y
  22. Barlow JT, Bogatyrev SR, Ismagilov RF. A quantitative sequencing framework for absolute abundance measurements of mucosal and lumenal microbial communities. Nat Commun. 2020;11(1):2590. doi: 10.1038/s41467-020-16224-6
  23. Al-Rawe AM, Suleiman AA. Exploitation of Absolute qPCR to Estimate Lactobacillus and Bifidobacterium Count in Human Gut as Indicator of Diabetic Mellitus Complication. Iraqi Journal of Science. Published online February 27, 2020:277-284. doi: 10.24996/ijs.2020.61.2.4
  24. Syauqy A, Afifah DN, Purwanti R, Nissa C, Fitranti DY, Chao JCJ. Reproducibility and validity of a food frequency questionnaire (Ffq) developed for middle-aged and older adults in semarang, Indonesia. Nutrients. 2021;13(11). doi: 10.3390/nu13114163
  25. Langendijk PS, Schut F, Jansen GJ, et al. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol. 1995;61(8):3069-3075. doi: 10.1128/aem.61.8.3069-3075.1995
  26. Duytschaever G, Huys G, Bekaert M, Boulanger L, De Boeck K, Vandamme P. Dysbiosis of bifidobacteria and Clostridium cluster XIVa in the cystic fibrosis fecal microbiota. Journal of Cystic Fibrosis. 2013;12(3):206-215. doi: 10.1016/j.jcf.2012.10.003
  27. Kementrian Kesehatan Republik Indonesia. Peraturan Menteri Kesehatan Republik Indonesia No.28 Tahun 2019 Tentang Angka Kecukupan Gizi Yang Dianjurkan Untuk Masyarakat Indonesia, Kememkes, Jakarta, 2019
  28. Schwingshackl L, Zähringer J, Beyerbach J, et al. A Scoping Review of Current Guidelines on Dietary Fat and Fat Quality. Ann Nutr Metab. 2021;77(2):65-82. doi: 10.1159/000515671
  29. Wang H, Huang X, Tan H, Chen X, Chen C, Nie S. Interaction between dietary fiber and bifidobacteria in promoting intestinal health. Food Chem. 2022;393:133407. doi: 10.1016/j.foodchem.2022.133407
  30. Jian C, Luukkonen P, Sädevirta S, Yki-Järvinen H, Salonen A. Impact of short-term overfeeding of saturated or unsaturated fat or sugars on the gut microbiota in relation to liver fat in obese and overweight adults. Clinical Nutrition. 2021;40(1):207-216. doi: 10.1016/j.clnu.2020.05.008
  31. Fu J, Zheng Y, Gao Y, Xu W. Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms. 2022;10(12). doi: 10.3390/microorganisms10122507
  32. Malesza IJ, Malesza M, Walkowiak J, et al. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells. 2021;10(11):3164. doi: 10.3390/cells10113164
  33. Shi J, Zhao D, Song S, et al. High-Meat-Protein High-Fat Diet Induced Dysbiosis of Gut Microbiota and Tryptophan Metabolism in Wistar Rats. J Agric Food Chem. 2020;68(23):6333-6346. doi: 10.1021/acs.jafc.0c00245
  34. Lotankar M, Houttu N, Mokkala K, Laitinen K. Diet–Gut Microbiota Relations: Critical Appraisal of Evidence From Studies Using Metagenomics. Nutr Rev. Published online December 24, 2024. doi: 10.1093/nutrit/nuae192
  35. Di Rosa C, Di Francesco L, Spiezia C, Khazrai YM. Effects of Animal and Vegetable Proteins on Gut Microbiota in Subjects with Overweight or Obesity. Nutrients. 2023;15(12). doi: 10.3390/nu15122675
  36. Devkota S, Chang EB. Interactions between Diet, Bile Acid Metabolism, Gut Microbiota, and Inflammatory Bowel Diseases. Digestive Diseases. 2015;33(3):351-356. doi: 10.1159/000371687
  37. Zhou H, Urso CJ, Jadeja V.

    Saturated Fatty Acids in Obesity-Associated Inflammation

    . J Inflamm Res. 2020;Volume 13:1-14. doi: 10.2147/JIR.S229691
  38. Chen J, Xiao Y, Li D, et al. New insights into the mechanisms of high‐fat diet mediated gut microbiota in chronic diseases. iMeta. 2023;2(1). doi: 10.1002/imt2.69
  39. de Queiroz Cavalcanti SA, de Almeida LA, Gasparotto J. Effects of a high saturated fatty acid diet on the intestinal microbiota modification and associated impacts on Parkinson’s disease development. J Neuroimmunol. 2023;382:578171. doi: 10.1016/j.jneuroim.2023.578171
  40. Darsini D, Hamidah H, Notobroto HB, Cahyono EA. Health Risks Associated with High Waist Circumference: A Systematic Review. J Public Health Res. 2020;9(2). doi: 10.4081/jphr.2020.1811
  41. Jo JK, Seo SH, Park SE, et al. Gut Microbiome and Metabolome Profiles Associated with High-Fat Diet in Mice. Metabolites. 2021;11(8):482. doi: 10.3390/metabo11080482
  42. Coelho OGL, Cândido FG, Alfenas R de CG. Dietary fat and gut microbiota: mechanisms involved in obesity control. Crit Rev Food Sci Nutr. 2019;59(19):3045-3053. doi: 10.1080/10408398.2018.1481821
  43. Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019;20(4):461-472. doi: 10.1007/s11154-019-09512-0
  44. Muralidharan J, Galiè S, Hernández-Alonso P, Bulló M, Salas-Salvadó J. Plant-Based Fat, Dietary Patterns Rich in Vegetable Fat and Gut Microbiota Modulation. Front Nutr. 2019;6. doi: 10.3389/fnut.2019.00157
  45. Shen W, Gaskins HR, McIntosh MK. Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. J Nutr Biochem. 2014;25(3):270-280. doi: 10.1016/j.jnutbio.2013.09.009
  46. Cândido FG, Valente FX, Grześkowiak ŁM, Moreira APB, Rocha DMUP, Alfenas R de CG. Impact of dietary fat on gut microbiota and low-grade systemic inflammation: mechanisms and clinical implications on obesity. Int J Food Sci Nutr. 2018;69(2):125-143. doi: 10.1080/09637486.2017.1343286
  47. Mariamenatu AH, Abdu EM. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their “Balanced Antagonistic Metabolic Functions” in the Human Body. J Lipids. 2021;2021:1-15. doi: 10.1155/2021/8848161
  48. Vijay A, Astbury S, Le Roy C, Spector TD, Valdes AM. The prebiotic effects of omega-3 fatty acid supplementation: A six-week randomised intervention trial. Gut Microbes. 2021;13(1). doi: 10.1080/19490976.2020.1863133
  49. Myhrstad MCW, Tunsjø H, Charnock C, Telle-Hansen VH. Dietary Fiber, Gut Microbiota, and Metabolic Regulation—Current Status in Human Randomized Trials. Nutrients. 2020;12(3):859. doi: 10.3390/nu12030859
  50. Cantu-Jungles TM, Agamennone V, Van den Broek TJ, Schuren FHJ, Hamaker B. Systematically-designed mixtures outperform single fibers for gut microbiota support. Gut Microbes. 2025;17(1). doi: 10.1080/19490976.2024.2442521
  51. Pastor R, Bouzas C, Tur JA. Beneficial effects of dietary supplementation with olive oil, oleic acid, or hydroxytyrosol in metabolic syndrome: Systematic review and meta-analysis. Free Radic Biol Med. 2021;172:372-385. doi: 10.1016/j.freeradbiomed.2021.06.017
  52. Michielsen CCJR, Hangelbroek RWJ, Feskens EJM, Afman LA. Disentangling the Effects of Monounsaturated Fatty Acids from Other Components of a Mediterranean Diet on Serum Metabolite Profiles: A Randomized Fully Controlled Dietary Intervention in Healthy Subjects at Risk of the Metabolic Syndrome. Mol Nutr Food Res. 2019;63(9). doi: 10.1002/mnfr.201801095
  53. Malaisé Y, Menard S, Cartier C, et al. Gut dysbiosis and impairment of immune system homeostasis in perinatally-exposed mice to Bisphenol A precede obese phenotype development. Sci Rep. 2017;7(1):14472. doi: 10.1038/s41598-017-15196-w

Last update:

No citation recorded.

Last update:

No citation recorded.