skip to main content

Exploring the Relationship of Vegetation Density and Land Cover on the Urban Heat Island Phenomenon in Coblong, Bandung

*Syahrir Rahman  -  School of Architecture, Planning, and Policy Development, Institut Teknologi Bandung, Bandung, Indonesia, Indonesia
Zumrotul Nur Azizah  -  School of Architecture, Planning, and Policy Development, Institut Teknologi Bandung, Bandung, Indonesia, Indonesia
Theresia Silvana Samba Djati  -  School of Architecture, Planning, and Policy Development, Institut Teknologi Bandung, Bandung, Indonesia, Indonesia
Muhammad Farras Rahman  -  School of Architecture, Planning, and Policy Development, Institut Teknologi Bandung, Bandung, Indonesia, Indonesia
Received: 27 Jan 2025; Published: 12 Mar 2025.
Editor(s): Prihadi Nugroho
Open Access Copyright (c) 2024 The Indonesian Journal of Planning and Development
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citation Format:
Abstract

The Urban Heat Island (UHI) phenomenon can occur naturally in urban areas due to increasing population density and built-up spaces, leading to higher temperatures compared to surrounding non-urban areas. This study investigates the Urban Heat Island (UHI) phenomenon in Coblong, Bandung, by analyzing land surface temperature (LST), vegetation density, and land cover data from 2017, 2019, and 2021 through remote sensing analysis using Landsat imagery data. The results reveal significant surface temperature disparities of 7 to 8 degrees Celsius between densely populated areas in the south and greener areas in the north of Coblong. The findings confirm the presence of the UHI effect and underscore the complexity of factors influencing it, including the distribution and density of vegetation. To mitigate this phenomenon, we propose a multifaceted approach that includes enhancing and strategically distributing green vegetation and employing innovative, more permeable construction materials for urban infrastructure. This strategy aims to reduce the UHI impact and improve thermal comfort and livability in Coblong,and might be applied to other areas with similar characteristics facing similar challenges.

Fulltext View|Download
Keywords: Urban Heat Island; Vegetation Density; Land Cover,

Article Metrics:

  1. Al Shawabkeh, R., Al Haddad, M., Al-Fugara, A., Al-Hawwari, L., Al-Hawwari, M. I., Omoush, A., & Arar, M. (2024). Modeling the impact of urban land cover features and changes on the land surface temperature (LST): The case of Jordan. Ain Shams Engineering Journal, 15(2), 102359. https://doi.org/10.1016/j.asej.2023.102359
  2. Alif, M. N., & Firdaus, M. I. (2021). Klasifikasi Perubahan Tutupan Lahan dengan Metode Supervised Classification Tahun 2015-2020 Menggunakan Citra Lansat OLI 8 (Studi Kasus: Kecamatan Pasirian). Seminar Nasional Geomatika 2021: Inovasi Geospasial Dalam Pengurangan Risiko Bencana
  3. Amani, S., & Shafizadeh-Moghadam, H. (2023). A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data. Agricultural Water Management, 284, 108324. https://doi.org/10.1016/j.agwat.2023.108324
  4. Aydin, E. E., Ortner, F. P., Peng, S., Yenardi, A., Chen, Z., & Tay, J. Z. (2024). Climate-responsive urban planning through generative models: Sensitivity analysis of urban planning and design parameters for urban heat island in Singapore’s residential settlements. Sustainable Cities and Society, 114, 105779. https://doi.org/10.1016/j.scs.2024.105779
  5. Ayuni, S. I., Widyatama, A. A., & Zani, N. M. (2023). The Effect of Changes in Land Cover and Vegetation Density on Urban Heat Island in Semarang City. PENA TEKNIK: Jurnal Ilmiah Ilmu-Ilmu Teknik, 8(1), 78. https://doi.org/10.51557/pt_jiit.v8i1.1632
  6. Cao, R., Liao, C., Li, Q., Tu, W., Zhu, R., Luo, N., Qiu, G., & Shi, W. (2023). Integrating satellite and street-level images for local climate zone mapping. International Journal of Applied Earth Observation and Geoinformation, 119, 103323. https://doi.org/10.1016/j.jag.2023.103323
  7. Chen, H., Deng, Q., Zhou, Z., Ren, Z., & Shan, X. (2022). Influence of land cover change on spatio-temporal distribution of urban heat island —a case in Wuhan main urban area. Sustainable Cities and Society, 79, 103715. https://doi.org/10.1016/j.scs.2022.103715
  8. Chen, X.-L., Zhao, H.-M., Li, P.-X., & Yin, Z.-Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133–146. https://doi.org/10.1016/j.rse.2005.11.016
  9. Devianti, O. K. A. D. (2020). Optimalisasi Fungsi Ekologis Ruang Terbuka Hijau sebagai Upaya Mengurangi Dampak Urban Heat Island: Studi Kasus di Kota Surabaya [Thesis]. Institut Teknologi Sepuluh November
  10. Esfehankalateh, A. T., Ngarambe, J., & Yun, G. Y. (2021). Influence of Tree Canopy Coverage and Leaf Area Density on Urban Heat Island Mitigation. Sustainability, 13(13), 7496. https://doi.org/10.3390/su13137496
  11. Guillevic, P., Göttsche, F., Nickeson, J., Hulley, G., Ghent, D., Yu, Y., Trigo, I., Hook, S., Sobrino, J. A., Remedios, J., Román, M., & Camacho, F. (2018). Land Surface Temperature Product Validation Best Practice Protocol. Version 1.1. 58. https://doi.org/10.5067/doc/ceoswgcv/lpv/lst.001
  12. Guo, A., He, T., Yue, W., Xiao, W., Yang, J., Zhang, M., & Li, M. (2023). Contribution of urban trees in reducing land surface temperature: Evidence from china’s major cities. International Journal of Applied Earth Observation and Geoinformation, 125, 103570. https://doi.org/10.1016/j.jag.2023.103570
  13. Humaida, N., Saputra, M. H., Sutomo, & Hadiyan, Y. (2023). Urban gardening for mitigating heat island effect. IOP Conference Series: Earth and Environmental Science, 1133(1), 012048. https://doi.org/10.1088/1755-1315/1133/1/012048
  14. Jannah, G. S., & Bioresita, F. (2023). Pemantauan Land Surface Temperature (LST) dan Kaitannya dengan Tutupan Lahan (Studi Kasus: Kota Surabaya Tahun 2014-2022). Jurnal Teknik ITS, 12(2). https://doi.org/10.12962/j23373539.v12i2.122579
  15. Jumari, N. A. S. K., Ahmed, A. N., Huang, Y. F., Ng, J. L., Koo, C. H., Chong, K. L., Sherif, M., & Elshafie, A. (2023). Analysis of urban heat islands with landsat satellite images and GIS in Kuala Lumpur Metropolitan City. Heliyon, 9(8), e18424. https://doi.org/10.1016/j.heliyon.2023.e18424
  16. Kusumaningrum, E. D., Saputra, A., & Nurwijayanti, A. (2024). Analysis of Vegetation Density Changes on Coastline Changes in the Glagah Coastal Area, Kulon Progo Regency 2018 and 2023. IOP Conference Series: Earth and Environmental Science, 1357(1), 012009. https://doi.org/10.1088/1755-1315/1357/1/012009
  17. Liu, C., Lu, S., Tian, J., Yin, L., Wang, L., & Zheng, W. (2024). Research Overview on Urban Heat Islands Driven by Computational Intelligence. Land, 13(12), 2176. https://doi.org/10.3390/land13122176
  18. Maru, R., Baharuddin, I. I., Umar, R., Rasyid, R., Uca, Sanusi, W., & Bayudin. (2015). Analysis of The Heat Island Phenomenon in Makassar, South Sulawesi, Indonesia. American Journal of Applied Sciences, 12(9), 616–626. https://doi.org/10.3844/ajassp.2015.616.626
  19. Nuissl, H., & Siedentop, S. (2012). Landscape Planning for Minimizing Land Consumption. In R. A. Meyers (Ed.), Encyclopedia of Sustainability Science and Technology (pp. 5785–5817). Springer New York. https://doi.org/10.1007/978-1-4419-0851-3_215
  20. Pontoh, N. K., & Kustiwan, I. (2018). Pengantar Perencanaan Perkotaan. ITB Press
  21. Puttaswamigowda, G. B., Aedla, R., & Dwarakish, G. S. (2013). Different Approaches for Land Use Land Cover Change Detection: A Review. Research and Reviews: Journal of Engineering and Technology, 2, 44–48
  22. Rao, P., Tassinari, P., & Torreggiani, D. (2023). Exploring the land-use urban heat island nexus under climate change conditions using machine learning approach: A spatio-temporal analysis of remotely sensed data. Heliyon, 9(8), e18423. https://doi.org/10.1016/j.heliyon.2023.e18423
  23. Rashid, N., Alam, J. A. M. M., Chowdhury, Md. A., & Islam, S. L. U. (2022). Impact of landuse change and urbanization on urban heat island effect in Narayanganj city, Bangladesh: A remote sensing-based estimation. Environmental Challenges, 8, 100571. https://doi.org/10.1016/j.envc.2022.100571
  24. Shukla, G., Tiwari, P., Dugesar, V., & Srivastava, P. K. (2021). Estimation of evapotranspiration using surface energy balance system and satellite datasets. In Agricultural Water Management (pp. 157–183). Elsevier. https://doi.org/10.1016/B978-0-12-812362-1.00009-6
  25. Singh, N., Singh, S., & Mall, R. K. (2020). Urban ecology and human health: implications of urban heat island, air pollution and climate change nexus. Urban Ecology: Emerging Patterns and Social-Ecological Systems, 317–334. https://doi.org/10.1016/B978-0-12-820730-7.00017-3
  26. Siswanto, S., Nuryanto, D. E., Ferdiansyah, M. R., Prastiwi, A. D., Dewi, O. C., Gamal, A., & Dimyati, M. (2023). Spatio-temporal characteristics of urban heat Island of Jakarta metropolitan. Remote Sensing Applications: Society and Environment, 32, 101062. https://doi.org/10.1016/j.rsase.2023.101062
  27. Stache, E., Schilperoort, B., Ottelé, M., & Jonkers, H. M. (2022). Comparative analysis in thermal behaviour of common urban building materials and vegetation and consequences for urban heat island effect. Building and Environment, 213, 108489. https://doi.org/10.1016/j.buildenv.2021.108489
  28. Stewart, I. D., & Mills, G. (2021). The Urban Heat Island. Elsevier. https://doi.org/10.1016/C2017-0-02872-0
  29. Tarigan, A. K. M., Sagala, S., Samsura, D. A. A., Fiisabiilillah, D. F., Simarmata, H. A., & Nababan, M. (2016). Bandung City, Indonesia. Cities, 50, 100–110. https://doi.org/10.1016/j.cities.2015.09.005
  30. Terang, R. G., & Syafriharti, R. (2020). Karakteristik Pergerakan Berdasarkan Kepadatan Penduduk untuk Tujuan Bekerja di Kota Bandung. Jurnal Wilayah dan Kota, 07(01), 1–9
  31. United Nations Human Settlement Programme. (2022). World Cities Report 2022
  32. US Environmental Protection Agency. (2024, December 10). People and Heat Islands | US EPA. https://www.epa.gov/heatislands/people-and-heat-islands
  33. Vujovic, S., Haddad, B., Karaky, H., Sebaibi, N., & Boutouil, M. (2021). Urban Heat Island: Causes, Consequences, and Mitigation Measures with Emphasis on Reflective and Permeable Pavements
  34. CivilEng, 2(2), 459–484. https://doi.org/10.3390/civileng2020026
  35. Wang, Y., Li, Y., Sabatino, S. Di, Martilli, A., & Chan, P. W. (2018). Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong. Environmental Research Letters, 13(3), 034015. https://doi.org/10.1088/1748-9326/aaa848
  36. Wijedasa, L. S., Sloan, S., Michelakis, D. G., & Clements, G. R. (2012). Overcoming Limitations with Landsat Imagery for Mapping of Peat Swamp Forests in Sundaland. Remote Sensing, 4(9), 2595–2618. https://doi.org/10.3390/rs4092595

Last update:

No citation recorded.

Last update:

No citation recorded.