skip to main content

Respon Perairan Terhadap Siklon Tropis Cempaka-Dahlia Di Perairan Selatan Jawa

*Muhammad Hafidz Ibnu Khaldun orcid scopus  -  Program Studi Pemanfaatan Sumberdaya Perikanan, Fakultas Peternakan, Universitas Jambi, Indonesia
Wiwid Andriyani Lestariningsih scopus  -  Program Studi Ilmu Kelautan, Fakultas Pertanian, Universitas Mataram, Indonesia
Lora Santika  -  Forum Ilmiah Pengelolaan Perikanan Berkelanjutan (FIP2B), Indonesia
Septy Heltria scopus  -  Program Studi Pemanfaatan Sumberdaya Perikanan, Fakultas Peternakan, Universitas Jambi, Indonesia

Citation Format:
Abstract
Siklon Cempaka-Dahlia (CD) yang terjadi di perairan Selatan Jawa merupakan fenomena yang menarik karena terjadi di daerah tropis yang umumnya jarang mengalami pembentukan siklon, terutama dekat ekuator. Siklon tropis yang melintasi suatu perairan mengakibatkan dampak pada lapisan permukaan dan kolom perairan secara biofisik. Aktifitas perikanan di perairan Selatan Jawa termasuk tinggi sehingga pemahaman menyeluruh mengenai dampak siklon diperlukan untuk memperoleh informasi terkait pengelolaan perikanan di masa depan. Penelitian ini bertujuan untuk menganalis respon permukaan dan kolom perairan sebelum, selama, dan setelah siklon CD dengan menggunakan data Copernicus dan Argo Float yang terletak pada jalur siklon. Hasil penelitian menunjukkan bahwa peningkatan kecepatan arus permukaan satu setengah kali selama siklon dan bergerak membentuk eddy selaras dengan angin permukaan. Eddy menyebabkan divergensi sehingga air pada kolom perairan yang dingin bergerak naik ke lapisan permukaan melalui proses ekman pumping menyebabkan penurunan suhu hingga 0,64°C. Selain itu, Ekman pumping menyebabkan massa air yang kaya nutrien ikut terangkat ke lapisan permukaan dan meningkatkan produktifitas primer di kedalaman lapisan campuran selama sembilan hari dengan jeda waktu 4-6 hari setelah terjadi siklon CD. Produktifitas primer yang meningkat diperoleh dari peningkatan konsentrasi klorofil-a dari 0,092 mg/m3menjadi 0,1789 mg/m3.
Fulltext View|Download
Keywords: Ekman pumping; Klorofil-a; Respon Perairan; Selatan Jawa; Siklon tropis

Article Metrics:

  1. Behrenfeld, M. J. & Falkowski, P. G. 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography, 42(1): 1-15. https://doi.org/10.4319/lo.1997.42.1.0001
  2. Chacko, N. & Zimik, L. 2018. Effect of cyclone thane in the bay of bengal explored using moored buoy observations and multi-platform satellite data. Journal of the Indian Society of Remote Sensing, 46(5): 821–828. https://doi.org/10.1007/s12524-017-0748-9
  3. Domingues, R., Goni, G., Bringas, F., Lee, S., Kim, H., Halliwell, G., Dong, J., Morell, J. & Pomales, L. 2015. Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations. Geophysical Research Letters, 42: 7131–7138. https://doi.org/10.1002/2015GL065378
  4. Donlon, C.J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E. & Wimmer, W. 2012. The Operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sensing Environment, 116:140–158
  5. Efendi, U., Fadlan, A. & Hidayat, A. M. 2018. Chlorophyll-A variability in the southern coast of Java Island, Indian Ocean: Corresponding to the tropical cyclone of Ernie. 1st International Conference on Maritime Sciences and Advanced Technology "Ocean Science and Technology Toward a Global Maritime Axis, Bali, Indonesia. 3–5 August 2017
  6. Emanuel, K. 2001. Contribution of tropical cyclones to meridional heat transport by the oceans. Journal of Geophysical Research Atmospheres, 106(D14): 14771–14781. https://doi.org/10.1029/2000JD900641
  7. Emery, W. J. & Thomson, R. E. 1998. Data analysis methods in physical oceanography. In Data analysis methods in physical oceanography. BPC Weatons. https://doi.org/10.2307/1353059
  8. Fitrianah, D., Hidayanto, A. N., Gaol, J. L., Fahmi, H. & Arymurthy, A. M. 2016. A Spatio-Temporal Data-Mining Approach for Identification of Potential Fishing Zones Based on Oceanographic Characteristics in the Eastern Indian Ocean. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(8): 3720–3728. https://doi.org/10.1109/JSTARS.2015.2492982
  9. Ginanjar, S., Syach, M. F. & Wulandari, S. 2020. Kajian pengaruh siklon tropis mangga terhadap curah hujan, transpor Ekman, viskositas Eddy dan tinggi gelombang di perairan selatan Jawa pada 20-25 Mei 2020. Jurnal Meteorologi Klimatologi Dan Geofisika, 7(2): 15–23
  10. Grande, M., Murua, H., Granado, I., Taconet, M., Kroodsma, D., Miller, A. & Fernandes, J. A. 2019. AIS-based fishing activity in the Eastern Indian Ocean. In Global Atlas of AIS-based fishing activity - Challenges and opportunities (Taconet, M, pp. 1–276). FAO
  11. Guinehut, S., Dhomps, A.L., Larnicol, G. & Le Traon, P. Y. 2012. High resolution 3-d temperature and salinity fields derived from in situ and satellite observations. Ocean Sci., 8: 845–857
  12. Hao, J., Chen, Y., Wang, F. & Lin, P. 2012. Seasonal thermocline in the China Seas and northwestern Pacific Ocean. Journal of Geophysical Research: Oceans, 117(2): 1–14. https://doi.org/10.1029/2011JC007246
  13. Haryanto, Y. D., Fadlan, A., Hartoko, A., Anggoro, S. & Zainuri, M. 2017. Dampak siklon tropis quang terhadap tinggi gelombang, arus laut dan upwelling di perairan selatan jawa. Jurnal Meteorologi Dan Geofisika, 18(1): 45–54. https://doi.org/10.31172/jmg.v18i1.348
  14. Ismoyo, D. O., & Putri, M. R. 2014. Identifikasi Awal Eddies di Perairan Laut Jawa. Jurnal Oseanologi Indonesia, 1(1): 12–20
  15. Khaldun, M. H. I., Naulita, Y. & Koropitan, A. F. 2020. Percampuran Turbulen Di Tenggara Samudera Hindia Saat Siklon Tropis Marcus Menggunakan Data ARGO Float. Journal of Marine and Aquatic Sciences, 6(2): 293-300. https://doi.org/10.24843/jmas.2020. v06.i02.p17
  16. Koropitan, A. F., Khaldun, M. H. I. & Naulita, Y. 2022. Impact of tropical Cyclone Marcus on ocean subsurface and surface layers. Global Journal of Environmental Science and Management, 8(3): 353–368. https://doi.org/10.22034/gjesm.2022.03.05
  17. Korty, R. L., Emanuel, K. A. & Scott, J. R. 2008. Tropical cyclone-induced upper-ocean mixing and climate: Application to equable climates. Journal of Climate, 21(4): 638–654. https://doi.org/10.1175/2007JCLI1659.1
  18. Lin, I. I. 2012. Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. Journal of Geophysical Research: Oceans, 117(3). https://doi.org/10.1029/2011JC007626
  19. Lin, I., Liu, W. T., Wu, C. C., Wong, G. T. F., Hu, C., Chen, Z., Liang, W. Der, Yang, Y. & Liu, K. K. 2003. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophysical Research Letters, 30(13): 10–13. https://doi.org/10.1029/ 2003GL017141
  20. Lumban-Gaol, J., Leben, R. R., Vignudelli, S., Mahapatra, K., Okada, Y., Nababan, B., Mei-Ling, M., Amri, K., Arhatin, R. E. & Syahdan, M. 2015. Variability of satellite-derived sea surface height anomaly, and its relationship with Bigeye tuna (Thunnus obesus) catch in the Eastern Indian Ocean. European Journal of Remote Sensing, 48: 465–477. https://doi.org/10.5721/EuJRS20154826
  21. Mann, K. H., & Lazier, J. R. N. 2006. Dynamics of marine ecosystems: Biological-physical interactions in the oceans. Blackwell Publishing
  22. Moore, J. K., Abbott, M. R. & Thomas, C. S. 2008. Phytoplankton in the Southern Ocean: A comparison of a predictive model and satellite observations. Journal of Marine Systems, 74(3-4): 111-132
  23. Mrvaljevic, R. K., Black, P. G., Centurioni, L. R., Chang, Y. T., D’Asaro, E. A., Jayne, S. R., Lee, C. M., Lien, R. C., Lin, I. I., Morzel, J., Niiler, P. P., Rainville, L. & Sanford, T. B. 2013. Observations of the cold wake of Typhoon Fanapi (2010). Geophysical Research Letters, 40(2): 316–321. https://doi.org/10.1029/2012GL054282
  24. Mulet, S., Rio, M.H., Mignot, A., Guinehut, S. & Morrow, R. 2012. A new estimate of the global 3d geostrophic ocean circulation based on satellite data and in-situ measurements. Deep Sea Research. Part II, 77–80: 70-81. https://doi.org/10.1016/j.dsr2.2012.04.012
  25. Perdana, R. B., Halida, M. & Pramono, S. A. 2020. Diurnal Rainfall On Tropical Cyclone Cempaka And Dahlia As Observed By TRMM. Megasains, 11(2): 42–45. https://doi.org/10.46824/megasains.v11i2.8
  26. Rio, M.H., Mulet, S. & Picot, N. 2014. Beyond GOCE for the ocean circulation estimate: synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophysal Research Letter, 41: 8918–8925
  27. Sandery, P. A., Brassington, G. B., Craig, A. & Pugh, T. 2010. Impacts of ocean-atmosphere coupling on tropical cyclone intensity change and ocean prediction in the Australian region. Monthly Weather Review, 138(6): 2074–2091. https://doi.org/10.1175/2010MWR3101.1
  28. Setiawan, R. Y., Susanto, R. D., Horii, T., Alifdini, I., Siswanto, E., Sari, Q. W., Wirasatriya, A. & Aryudiawan, C. 2024. The Fujiwhara effect on ocean biophysical variables in the southeastern tropical Indian Ocean region. Journal of Marine Systems, 245(103990). https://doi.org/https://doi.org/10.1016/j.jmarsys.2024.103990
  29. Stewart, R. H. 2008. Introduction to Physical Oceanography. Texas A&M University
  30. Suhardi, B., Adiputra, A. & Reeva Avrian. 2020. Kajian Dampak Cuaca Ekstrem Saat Siklon Tropis Cempaka dan Dahlia di Wilayah Jawa Barat. Jurnal Geografi, Edukasi Dan Lingkungan (JGEL), 4(2): 61–67. https://doi.org/10.29405/jgel.v4i2.4354
  31. Syaifullah, M. D. 2015. Siklon Tropis, Karasteristik Dan Pengaruhnya Di Wilayah Indonesia Pada Tahun 2012. Jurnal Sains Dan Teknologi Modifikasi Cuaca, 16(2): 61–71. http://dx.doi.org/10.29122/jstmc.v16i2.1048
  32. Tomczak, M. & Godfrey, J. S. 2003. Regional Oceanography: An Introduction. Elsevier
  33. Triyono, Arifin, T., Nugroho, D., Novianto, D., Rahmawati, H., Amri, S., Faizah, R., Prihatiningsih, Nurfiarini, A. & Purnomo, A. 2019. Potensi Sumberdaya Kelautan dan Perikanan WPPNRI 573. Amafrad Press
  34. Windupranata, W., A.D.S. Nusantara, C., D. Wijaya, D. & Prijatna, K. 2019. Impact Analysis of Tropical Cyclone Cempaka-Dahlia on Wave Heights in Indonesian Waters from Numerical Model and Altimetry Satellite. KnE Engineering, 203–214. https://doi.org/10.18502 /keg.v4i3.5851
  35. Yan, Y., Li, L., & Wang, C. 2017. The effects of oceanic barrier layer on the upper ocean response to tropical cyclones. Journal of Geophysical Research Ocean, 122: 4829–4844. https://doi.org/ 10.1038/175238c0
  36. Yang, Y., Liu, L., Li, K., Yu, W., & Wang, H. 2020. Diurnal Sea surface temperature response to tropical cyclone Dahlia in the Eastern tropical Indian Ocean in 2017 revealed by the Bailong buoy. Dynamics of Atmospheres and Oceans, 92, 101163. https://doi.org/10.1016/j.dynatmoce. 2020.101163

Last update:

No citation recorded.

Last update:

No citation recorded.