skip to main content

Kondisi Arus Pasang Surut dan Angin di Perairan Sekitar PLTU Muara Karang sebagai Indikator Persebaran NORM

*Nurin Fazira Asdwina  -  Department of Oceanography, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Heny Suseno orcid scopus publons  -  Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology. Research Organization of Nuclear Energy, National Research and Innovation Agency (BRIN), Indonesia, Indonesia
Muslim Muslim scopus  -  Department of Oceanography, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Mohamad Nur Yahya scopus  -  Research Center for Nuclear Safety, Metrology and Quality Technology. National Research and Innovation Agency (BRIN), Indonesia, Indonesia

Citation Format:
Abstract

Arus dan angin merupakan parameter fisika oseanografi yang dapat dijadikan sebagai indikator persebaran senyawa kimia, khususnya radionuklida di perairan. Arus di perairan sekitar PLTU yang terletak di perairan Teluk Jakarta didominasi oleh pengaruh pasang surut. Adanya PLTU menghasilkan fly ash yang sebarannya terbawa angin dan kemudian memasuki perairan. Penelitian ini bertujuan untuk mengetahui sejauh mana arus pasang surut dan arah angin mempengaruhi persebaran NORM (Naturally Occuring Radioactive Material) di sedimen yang merupakan bahan radioaktif yang terdapat di bumi secara alami dan mengalami peningkatan akibat aktivitas PLTU. Pemodelan arus pasang surut di verifikasi dengan data observasi BIG serta kecepatan dan arah angin di interpretasikan menggunakan windrose.  Hasil penelitian menunjukkan kecepatan arus di sekitar perairan PLTU Muara Karang pada saat pasang tertinggi di bulan Juni 2021 berkisar antara 0,03-0,19 m/s dan saat surut terendah berkisar 0–0,15 m/s. Arus dengan kecepatan dibawah 0,5 m/s tidak berpengaruh secara langsung terhadap sebaran radionuklida di sekitar perairan PLTU, tetapi tidak menutup kemungkinan bila dalam jangka waktu yang lama arus dapat menggerakkan sedimen. Kecepatan arus yang semakin besar ke arah lepas pantai akan mempengaruhi proses difusi dan adveksi. Arah angin dominan berkontribusi pada persebaran NORM yang berada di barat laut-utara PLTU, karena kekuatan anginnya hanya terpusat di sekitar PLTU sehingga mengakibatkan konsentrasi maksimum diperoleh di dekat cerobong asap.

Kata kunci: Arus pasang surut, angin, sedimen, sebaran NORM, PLTU Muara Karang

 

Abstract

Currents and winds are oceanographic physical parameters that can be used as indicators of the distribution of chemical compounds, especially radionuclides in waters. Currents in the waters around the power plant located in the waters of Jakarta Bay are dominated by tidal influences. The existence of power plant produces fly ash which is scattered by the wind and then enters the waters. The aim of the research was to determine the extent to which tidal currents and wind direction affect the distribution of NORM (Naturally Occuring Radioactive Material) in sediments which are radioactive materials found on earth naturally and have increased due to power plant activity. Tidal current modeling was verified with BIG observation data and wind speed and direction were interpreted using windrose. The results showed that the current velocity around the waters of Muara Karang power plant at the highest tide in June 2021 ranged from 0.03-0.19 m/s and at low tide it ranged 0–0.15 m/s. Currents with velocities below 0.5 m/s have no direct effect on the distribution of radionuclides around the waters of the power plant, but it is possible if the currents can move sediment for a long time. The higher the current velocity offshore will affect the diffusion and advection processes. The dominant wind direction contributes to the distribution of NORM which is in the northwest-north of the power plant, because the wind strength is only concentrated around the power plant so that the maximum concentration is obtained near the chimney.

Keywords : Tidal current, wind, sediment, NORM distribution, Muara Karang power plant

Fulltext View|Download
Keywords: Arus pasang surut, angin, sedimen, sebaran NORM, PLTU Muara Karang

Article Metrics:

  1. Alviandini, N. B., Muslim, M., Prihatiningsih, W. R., & Wulandari, S. Y. 2019. Aktivitas NORM pada Sedimen Dasar di Perairan PLTU Tanjung Jati Jepara dan Kaitannya dengan Ukuran Butir Sedimen serta TOC. Eksplorium, 40(2):115
  2. Anggraini, N. H., Iskandar, D., & Stefanus, M. 2018. Studi Peningkatan Radionuklida Alam karena Lepasan Abu Terbang di Sekitar PLTU Labuan. Sains dan Teknologi Nuklir Indonesia, 19(1):29–40
  3. Dinis, M. L., Fiúza, A., Carvalho, J. D., Góis, J., Castro, M., & Frias, R. 2013. Radiological Impact Associated to Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) from Coal-Fired Power Plants Emissions. Proceeding of WM2013 Conference, Phoenix
  4. El-Gamal, H., Farid, M. E. A., Abdel Mageed, A. I., Hasab, M., & Hassanien, H. M. 2013. Considerable Hazards Produced by Heavy Fuel Oil in Operating Thermal Power Plant in Assiut, Egypt. Environmental Science and Pollution Research, 20(9):6331–6336
  5. Hendrawan, I. G., & Asai, K. 2014. Numerical Study on Tidal Currents and Seawater Exchange in the Benoa Bay, Bali, Indonesia. Acta Oceanologica Sinica, 33(3):90–100
  6. Hendrawan, I. G., Uniluha, D., & Maharta, I. P. R. F. 2016. Karakteristik Total Padatan Tersuspensi (Total Suspended Solid) Dan Kekeruhan (Turbidity) Secara Vertikal Di Perairan Teluk Benoa, Bali. Journal of Marine and Aquatic Sciences, 2(1):29-33
  7. Hernández, C. M.A., Bernal-Castillo, J., Morera-Gómez, Y., Guillen-Arruebarrena, A., Cartas-Aguila, H. A., & Acosta-milián, R. 2014. Naturally Occurring Radioactive Materials (NORM) in Ashes from a Fuel-Oil Power Plant in Cienfuegos, Cuba, and the Associated Radiation Hazards. Radiation Protection Dosimetry, 158(4):421–426
  8. Huang, A., Rao, Y. R., & Lu, Y. 2010. Evaluation of a 3-D Hydrodynamic Model and Atmospheric Forecast Forcing using Observations in Lake Ontario. Journal of Geophysical Research: Oceans, 115(2)
  9. Kartadikaria, A. R., Miyazawa, Y., Varlamov, S. M., & Nadaoka, K. 2011. Ocean Circulation for the Indonesian Seas Driven by Tides and Atmospheric Forcings: Comparison to Observational Data. Journal of Geophysical Research: Oceans, 116(9)
  10. Lazure, P., Garnier, V., Dumas, F., Herry, C., & Chifflet, M. 2009. Development of a Hydrodynamic Model of the Bay of Biscay. Validation of Hydrology. Continental Shelf Research, 29(8):985–997
  11. Liu, G., Luo, Q., Ding, M., & Feng, J. 2015. Natural Radionuclides in Soil near a Coal-Fired Power Plant in the High Background Radiation Area, South China. Environmental Monitoring and Assessment, 187(6)
  12. Minarrohman, M. G., & Pratomo, D. G. 2017. Simulasi Arus dan Distribusi Sedimen secara 3 Dimensi di Pantai Selatan Jawa. Jurnal Teknik ITS, 6(2): 172-177
  13. Muslim. 2007. Marine Radionuclide (Nuklir di laut). Universitas Diponegoro Press, Semarang
  14. Muslim, Suseno, H., & Rafsani, F. 2015. Distribution of 137Cs Radionuclide in Industrial Wastes Effluents of Gresik, East Java, Indonesia. Atom Indonesia, 41(1):47–50
  15. Nikezić, D. P., Gršić, Z. J., Dramlić, D. M., Dramlić, S. D., Lončar, B. B., & Dimović, S. D. 2017. Modeling air concentration of fly ash in Belgrade, Emitted from Thermal Power Plants TNTA and TNTB. Process Safety and Environmental Protection, 106:274–283
  16. Nikezić, D. P., Lončar, B. B., & Gršić, Z. J. 2014. Mathematical Modeling of Environmental Impacts of a Reactor through the Air. Nuclear Technology and Radiation Protection, 29(4):268–273
  17. Ozden, B., Guler, E., Vaasma, T., Horvath, M., Kiisk, M., & Kovacs, T. 2018. Enrichment of Naturally Occurring Radionuclides and Trace Elements in Yatagan and Yenikoy Coal-Fired Thermal Power Plants, Turkey. Journal of Environmental Radioactivity, 188:100–107
  18. Suseno, H., & Wahono, I. B. 2018. Present Status of 137Cs in Seawaters of the Lombok Strait and the Flores Sea at the Indonesia Through Flow (ITF) Following the Fukushima accident. Marine Pollution Bulletin, 127:458–462
  19. Vaasma, T., Loosaar, J., Kiisk, M., & Tkaczyk, A. H. 2017. Radionuclide Concentration Variations in the Fuel and Residues of Oil Shale-Fired Power Plants: Estimations of the Radiological Characteristics over a 2-year Period. Journal of Environmental Radioactivity, 173:25–33
  20. Vives i B., J., Aoyama, M., Bradshaw, C., Brown, J., Buesseler, K. O., Casacuberta, N., Christl, M., Duffa, C., Impens, N. R. E. N., Iosjpe, M., Masqué, P., & Nishikawa, J. 2018. Marine Radioecology after the Fukushima Dai-ichi Nuclear Accident: Are we Better Positioned to Understand the Impact of Radionuclides in Marine Ecosystems?. Science of the Total Environment, 618(11):80–92
  21. Wirasatriya, A., Hartoko, A., & Suripin. 2006. Kajian Kenaikan Muka Laut sebagai Landasan Penanggulangan Rob di Pesisir Kota Semarang. Jurnal Pasir Laut, 1(2):31–42
  22. Wisha, U. J., Tanto, T. Al, Pranowo, W. S., & Husrin, S. 2018. Current Movement in Benoa Bay Water, Bali, Indonesia: Pattern of Tidal Current Changes Simulated for the Condition before, during, and after Reclamation. Regional Studies in Marine Science, 18:177–187
  23. Xu, M., & Chua, V. P. 2017. A Numerical Study on Land-Based Pollutant Transport in Singapore Coastal Waters with a Coupled Hydrologic-Hydrodynamic Model. Journal of Hydro-Environment Research, 14:119–142

Last update:

No citation recorded.

Last update:

No citation recorded.