skip to main content

Adsorpsi Ion Cr (III) Menggunakan Zeolit Alam Termodifikasi Dietanolamin

Isharyanti Isharyanti  -  Department of Chemistry, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Sriatun Sriatun scopus publons  -  Chemistry Department, Diponegoro University, Indonesia
*Choiril Azmiyawati  -  Department of Chemistry, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Open Access Copyright 2024 Greensphere: Journal of Environmental Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Krom merupakan salah satu logam berat berbahaya yang bersifat polutan di lingkungan perairan sehingga keberadaannya harus ditangani dengan baik. Salah satu metode yang dapat digunakan untuk mengatasi polutan tersebut adalah adsorpsi menggunakan zeolit. Zeolit memiliki permukaan bermuatan negatif dalam struktur kristalnya membuat zeolit mampu mengikat kation. Untuk menambah kekuatan pengikatan ditambahkan Dietanolamin (DEA) sebagai agen pengompleks. Tujuan penelitian ini adalah memperoleh zeolit termodifikasi Dietanolamin (DEA) (5, 10 dan 15% v/v) dan menentukan kemampuan adsorpsi zeolit termodifikasi DEA terhadap ion Cr (III) pada variasi pH (2, 3, 4, 6, dan 6) dan konsentrasi ion Cr (III) (750, 1000, 1500, 2000, dan 2500). Hasil karakterisasi dengan FTIR menunjukkan serapan pada bilangan gelombang 1303,88 dan 1381,03 cm-1 yang merupakan vibrasi ulur –CN, serta 1543,05 cm-1 yang merupakan vibrasi tekuk –NH. Kemampuan adsorpsi terhadap ion krom (III) terbaik sebesar 50,73 mg/g oleh adsorben Zeolit DEA 10% pada pH = 5 dan konsentrasi ion Cr (III) 1000 ppm. 

Fulltext View|Download
Keywords: Zeolit alam, dietanolamin (DEA), adsorpsi, ion Cr (III)

Article Metrics:

  1. Kaźmierczak, B., Molenda, J., & Swat, M. (2021). The adsorption of chromium (III) ions from water solutions on biocarbons obtained from plant waste. Environmental Technology & Innovation, 23, 101737. https://doi.org/https://doi.org/10.1016/j.eti.2021.101737
  2. Bai, W., Tang, R., Wu, G., Wang, W., Yuan, S., Xiao, L., Zhan, X., & Hu, Z.-H. (2023). Co-precipitation of heavy metals with struvite from digested swine wastewater: Role of suspended solids. Journal of Hazardous Materials, 455, 131633. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.131633
  3. Deekshitha, K., Rao, M. S., Rebello, N., Ramaprasad, A. T., Jayarama, A., & Pinto, R. (2022). A novel cross-linked PVA-Chitosan composite membrane for heavy metal filtration applications. Materials Today: Proceedings, 66, 2493–2498. https://doi.org/https://doi.org/10.1016/j.matpr.2022.06.487
  4. Rostami, M. S., & Khodaei, M. M. (2024). Recent advances in chitosan-based nanocomposites for adsorption and removal of heavy metal ions. International Journal of Biological Macromolecules, 132386. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2024.13238
  5. Sriatun, S., Manasikana, O. A., & Darmawan, A. (2008). Modifikasi Zeolit Alam dengan Ligan EDTA untuk Adsorpsi Ion Logam Pb2+ dan Cd2+. Jurnal Kimia Sains Dan Aplikasi; Vol 11, No 2 (2008): Volume 11 Issue 2 Year 2008DO - 10.14710/Jksa.11.2.43-47. https://ejournal.undip.ac.id/index.php/ksa/article/view/3548
  6. Velarde, L., Nikjoo, D., Escalera, E., & Akhtar, F. (2024). Bolivian natural zeolite as a low-cost adsorbent for the adsorption of cadmium: Isotherms and kinetics. Heliyon, 10(1), e24006. https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e24006
  7. Nurianingsih, R., Sriatun, S., & Darmawan, A. (2019). Polyaniline Modified Natural Zeolite as Adsorbent for Chromium(III) Metal Ion. Jurnal Kimia Sains Dan Aplikasi, 22(6), 292–298. https://doi.org/10.14710/jksa.22.6.292-298
  8. Hailu, Y., Tilahun, E., Brhane, A., Resky, H., & Sahu, O. (2019). Ion exchanges process for calcium, magnesium and total hardness from ground water with natural zeolite. Groundwater for Sustainable Development, 8, 457–467. https://doi.org/https://doi.org/10.1016/j.gsd.2019.01.009
  9. Cha, Y. H., & Lee, K. B. (2023). Examining the impact of different anions in Cu precursors on sulfur adsorption through zeolites with Cu ion-exchange. Chemical Engineering Journal, 468, 143461. https://doi.org/https://doi.org/10.1016/j.cej.2023.143461
  10. Wicaksono, M. R., Handayani, I. P., Andiani, L., Chandra, I., Muminati, S. A., Wardhani, N. P. E. K., & Verasta, T. (2024). Molecular sieve 13X activated zeolite for CO2 filter in air purifier. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2024.03.017
  11. Qomaruzzaman, I., Sriatun, S., & Suhartana, S. (2020). NModifikasi Zeolit Alam menggunakan Trietanolamin (TEA) sebagai Adsorben Ion Logam Kromium (III)o Title. Akta Kimia Indonesia, 5(2), 62–75. https://doi.org/10.12962/j25493736.v5i2.7807
  12. Castellazzi, P., Notaro, M., Busca, G., & Finocchio, E. (2016). CO2 capture by functionalized alumina sorbents: DiEthanolAmine on γ-alumina. Microporous and Mesoporous Materials, 226, 444–453. https://doi.org/https://doi.org/10.1016/j.micromeso.2016.02.027
  13. Sriatun, S., Susanto, H., Widayat, W., Darmawan, A., Sriyanti, S., Kurniasari, R., & Kurniawati, R. (2020). Synthesis of silica-rich zeolite using quaternary ammonium-based templates. Journal of Physics: Conference Series, 1524(1), 0–11. https://doi.org/10.1088/1742-6596/1524/1/012087
  14. Ma, Y.-K., Rigolet, S., Michelin, L., Paillaud, J.-L., Mintova, S., Khoerunnisa, F., Daou, T. J., & Ng, E.-P. (2021). Facile and fast determination of Si/Al ratio of zeolites using FTIR spectroscopy technique. Microporous and Mesoporous Materials, 311, 110683. https://doi.org/https://doi.org/10.1016/j.micromeso.2020.110683
  15. Chatti, R., Bansiwal, A., Thote, J., Jha, V., Jadhav, P., Lokhande, S., Biniwale, R., Labhsetwar, N., & Rayalu, S. (2009). Amine Loaded Zeolites for Carbon Dioxide Capture: Amine Loading and Adsorption Studies. Microporous and Mesoporous Materials, 121, 84–89. https://doi.org/10.1016/j.micromeso.2009.01.007
  16. Xiong, Y., Cui, X., Wang, D., Wang, Y., Lou, Z., Shan, W., & Fan, Y. (2019). Diethanolamine functionalized rice husk for highly efficient recovery of gallium(III) from solution and a mechanism study. Materials Science and Engineering: C, 99, 1115–1122. https://doi.org/https://doi.org/10.1016/j.msec.2019.02.028
  17. Taffarel, S. R., & Rubio, J. (2010). Adsorption of sodium dodecyl benzene sulfonate from aqueous solution using a modified natural zeolite with CTAB. Minerals Engineering, 23(10), 771–779. https://doi.org/https://doi.org/10.1016/j.mineng.2010.05.018
  18. Hamdan, H. (1992). Introduction to zeolites: synthesis, characterization, and modification (K. Universiti Teknologi Malaysia (ed.))
  19. Chen, G., Yang, L., Chen, J., Miki, T., Li, S., Bai, H., & Nagasaka, T. (2019). Competitive mechanism and influencing factors for the simultaneous removal of Cr(III) and Zn(II) in acidic aqueous solutions using steel slag: Batch and column experiments. Journal of Cleaner Production, 230, 69–79. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.04.402
  20. Motlagh Bahadory Esfahani, S., & Faghihian, H. (2014). Modification of synthesized β-zeolite by ethylenediamine and monoethanolamine for adsorption of Pb2+. Journal of Water Process Engineering, 3, 62–66. https://doi.org/https://doi.org/10.1016/j.jwpe.2014.05.007
  21. Pearson, R. G. (1963). Hard and Soft Acids and Bases. Journal of the American Chemical Society, 85(22), 3533–3539. https://doi.org/10.1021/ja00905a001

Last update:

No citation recorded.

Last update:

No citation recorded.