skip to main content

Isolasi dan Karakterisasi Amilase Termostabildari Geobacillus dYtae-14

*Agustin L.N. Aminin scopus  -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Semarang, Indonesia, Indonesia
Yulia Milarsih  -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Semarang, Indonesia, Indonesia
Nies Suci Mulyani  -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Semarang, Indonesia, Indonesia
Open Access Copyright 2023 Greensphere: Journal of Environmental Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Enzim amilase termostabil merupakan salah satu enzim yang sangat potensial bagi industri, terutama industri makanan dan farmasi. Enzim termostabil memiliki beberapa keuntungan seperti reaksi berlangsung lebih cepat, menurunkan viskositas dan mencegah kontaminasi karena produksi berlangsung pada suhu tinggi. Penelitian ini mengeksplorasi potensi amilase termostabil dari isolat lokal  Geobacillus dYTae-14 yang tumbuh optimum pada suhu 55oC. Aktivitas spesifik amilase ditentukan berdasarkan produk glukosa yang diukur dengan metode DNS dan kadar protein ditentukan dengan metode Lowry. Tahapan penelitian ini meliputi pembuatan kurva pertumbuhan, isolasi enzim amilase termostabil, pemurnian parsial enzim, dialisis, penentuan aktifitas spesifik tiap fraksi, penentuan kandungan protein, penentuan temperatur dan pH optimum. Amilase termostabil dari Geobacillus dYTae-14 berhasil diisolasi dan menunjukkan aktivitas spesifik tertinggi pada fraksi kejenuhan ammonium sulfat 20-40%, sebesar 934,356 unit/mg protein. Temperatur optimum amilase termostabil dicapai pada 85oC dan pH optimum di pH 8; dengan aktivitas spesifik sebesar 2143,538 unit/mg protein.

 

 

Fulltext View|Download
Keywords: amilase, termostabil, Geobacillus sp.
Funding: Universitas Diponegoro

Article Metrics:

  1. Verma, A.; Gupta, M. dan Shirkot, P. 2014. Isolation and characterization of thermophilic bacteria in natural hot water springs of Himachal Pradesh (India). The Bioscan. 9. 947-952
  2. Das, S.; Singh, S.; Sharma, V. dan Soni, M. L. 2011. Biotechnological applications of industrially important amylase enzyme. International Journal of Pharma and Bio Sciences, vol. 2, pp. 486-496
  3. Sharma, P.; S. Gupta, A. Sourirajan, dan K. Dev, 2015. Characterization of extracellular thermophilic amylase from Geobacillus sp. isolated from Tattapani hot spring of Himachal Pradesh, India. Current Biotechnology, vol. 4, no. 2, pp. 202-209
  4. Homaei, A. ; Ghanbarzadeh, M. dan F. Monsef, 2016. Biochemical features and kinetic properties of alpha amylases from marine organisms. International Journal of Biological Macromolecules, vol. 83, pp. 306-314
  5. Aiyer PV. 2005. Amylases and Their Application, African Journal of Biotechnology. 4 (13): 1525-1529. https://academicjournals.org/article/article1380354960_Aiyer.pdf
  6. Gupta, R., Gigras, P., Mohapatra, H., Goswami, V.K., Chauhan, B., 2003. Microbial α-amylases: a biotechnological perspective. Process Biochem, 38, 1599 - 1616
  7. Deeran, Pratibha., Kumar, Sachin., Jaiswal, Yogesh K., Adhikari, Dilip K., 2010, Characterization of hyperthermostable alpha-amylase from Geobacillus sp. IIPTN. Applied Microbiology and Biotechnology. 86 (6): 1857-66
  8. Kumar, N. Manoj., Karthikeyan, S., dan Jayaraman, G., 2012., Thermostable alpha amylase enzyme production from Bacillus laterosporus : Statistical Optimization, Purification and Characterization., Biocatalysis and Agricultural Biotechnology., vol.2, 38-44
  9. Aminin, A L N., Madayanti, F. ; Aditiawati, P.; Akhmaloka., 2007, Isolation Of Thermophiles From Gedongsongo Hot Spring Using A Simple Enrichment Medium, International Seminar Advance in Biological Science. Yogyakarta
  10. Damayanti, K. I.; Mulyani, N. S. dan Aminin, A. L. N., 2020. Freeze-thaw system for thermostable β-Galactosidase isolation from Gedong Songo Geobacillus sp. isolate. Jurnal Kimia Sains dan Aplikasi, 23, 11, 383-389. https://doi.org/10.14710/jksa.23.11.383-389
  11. Dennison, C., 2002, A Guide to Protein Isolation, Kluwer Academic Publisher : 50-104
  12. Lehninger, A.L., 1994, Dasar-Dasar Biokimia, alih bahasa Maggy T, Erlangga, Jakarta
  13. Scopes, R. K., 1987, Protein Purification, Principle and Practice, 3rd edition, Springer Verlag, New York, 85-92
  14. Clark, Jr., John, M., and Switzen, R. L., 1997, Experimental Biochemistry, 2nd edition, John Wiley and Sons inc., USA, 116-123
  15. Reddy NS, Nimmagadda A & Rao KR., 2003., An Overview of Thermicrobial α-Amylase Family, African Journal of Biotechnology, 2:645-648
  16. Saboto, D., Nucci, R., Rossi, M., Gryczynski, I., Gryczyniski, Z.,Lakowicz, J., 1999. The b-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus: enzyme activity and conformationaldynamics at temperatures above 100 C. Biophys. Chem. 81,23–31
  17. Asgher, M. , Javaid A. , S. U. Rahman, dan R. L. Legge, 2007. A thermostable a-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. Journal of Food Engineering, vol. 79, no. 3, pp. 950-955
  18. Crab, W. D. dan C. Mitchinson, 1997. Enzymes involved in the processing of starch to sugars, Tibtech., vol. 15, pp. 349-352
  19. Gromiha, M. M. ; Oobatake, M. dan A. Sarai, 1999. Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins, Biophysical Chemistry, vol. 82, no. 1, pp. 51-67
  20. Zhang, S. ; Y. He, H. Yu, dan Z. Dong, 2014. Seven N-terminal Residues of a thermophilic xylanase are sufficient to confer hyperthermostability on its mesophilic counterpart,” PLOS ONE, vol. 9, no.1, e87632

Last update:

No citation recorded.

Last update:

No citation recorded.