skip to main content

Fabrikasi Ramah Lingkungan Komposit Nano Karbon Aktif-Partikel Perak dan Uji Aktifitas Antibakterinya

Radinal Yogi Nurcahyo  -  Chemistry Department, Diponegoro University, Indonesia
*Pratama Jujur Wibawa  -  Chemistry Department, Diponegoro University, Indonesia
Open Access Copyright 2022 Greensphere: Journal of Environmental Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Nanokomposit karbon-perak aktif nanopartikel (AC-AgNPs) telah berhasil difabrikasi secara ramah lingkungan menggunakan ultrasonik (40 kHz; 2x50 watt) untuk berbagai waktu pengadukan 10, 20, dan 30 menit. Penelitian ini bertujuan untuk mengetahui hubungan waktu pengadukan ultrasonik dan aktivitas antibakteri dari nanokomposit terkait tersebut. Untuk itu, langkah pertama yang dilakukan adalah mensintesis nanopartikel perak (AgNPs) dari garam perak nitrat (AgNO3) (10 ml,3 mM) menggunakan ekstrak air-nanas berbagai konsentrasi sekitar 10, 20, 30, 40 dan 50 % b/ v. Langkah kedua adalah fabrikasi nanopartikel karbon aktif (ACNPs) dari bubuk halus karbon hitam lokal yang tersedia secara komersial melalui metode top-down yang canggih. Akhirnya, campur ACNP dan AgNP yang dihasilkan dengan benar di bawah agitasi ultrasonik seperti yang disebutkan di atas. Analisis dan karakterisasi bahan yang dihasilkan yang diinginkan dilakukan dengan menggunakan spektroskopi Ultra violet-tampak (UV-Vis), mikroskop elektron Transmisi (TEM), dan spektroskopi inframerah transformasi Fourier (FTIR). Diketahui bahwa AgNP berukuran sekitar 10-50 nm berhasil diproduksi dengan partikel berbentuk bola. AgNPs kemudian dapat digabungkan dan disebarkan secara merata pada permukaan matriks ACNPs. Dalam situasi ini, spektrum FTIR menegaskan bahwa AgNP yang disebutkan secara khusus berinteraksi satu sama lain dengan gugus hidroksil (-OH) dan karbonil (C=O) yang ada pada permukaan matriks ACNP. Aktivitas antibakteri nanokomposit AC-AgNPs yang dihasilkan diuji secara terpisah terhadap bakteri E. coli dan S. aureus menggunakan metode cakram kertas saring agarosa. Diketahui bahwa zona bening yang dihasilkan di sekitar cakram rata-rata sekitar 1,23 mm dan 2,07 mm untuk Eschericia coli (E. coli) dan Staphylococus aureus (S. aureus).

Fulltext View|Download
Keywords: fabrikasi ramah lingkungan; ekstrak nanas; nanopartikel perak; karbon aktif; nanokomposit
Funding: Universitas Diponegoro

Article Metrics:

  1. Tuan, T. Q., Son, N. Van, Dung, H. T. K., Luong, N. H., Thuy, B. T., , … Hai, N. H. (2011). Preparation and properties of silver nanoparticles loaded in activated carbon for biological and environmental applications. Journal of Hazardous Materials, 192(3), 1321–1329
  2. Guzman, M., Dille, J., & Godet, S. (2012). Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 8(1), 37–45
  3. Liu, F., Guo, N., Chen, C., Meng, X., & Shao, X. (2016). Microwave synthesis Ag/reduced graphene oxide composites and enhanced antibacterial performance. Materials Research Innovations, 20(7), 512–517
  4. Tahir, K., Ahmad, A., Li, B., Ullah, A., Nazir, S., Ul, Z., … Ullah, S. (2016). Preparation, characterization and an efficient photocatalytic activity of Au/TiO2 nanocomposite prepared by green deposition method. Materials Letters, 178, 56–59
  5. Bindhu, M. R., & Umadevi, M. (2014). Surface plasmon resonance optical sensor and antibacterial activities of biosynthesized silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121, 596–604
  6. Jenitha, A. X., & Anusuya, A. (2016). Phytochemical screening and in vitro antioxidant activity of ananas comosus. Int. J. of Res. in Pharmacology & Pharmacotherapeutics, 5(2), 162–169
  7. Ji, H., Sun, H., & Qu, X. (2016). Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges. Advanced Drug Delivery Reviews, 105(Part B), 176–189
  8. Gitipour, A., El Badawy, A., Arambewela, M., Miller, B., … Tolaymat, T. (2013). The Impact of Silver Nanoparticles on the Composting of Municipal Solid Waste. Environmental Science & Technology, 47(24), 14385–14393
  9. Saravanan, A., Kumar, P. S., Devi, G. K., & Arumugam, T. (2016). Microbial Pathogenesis Synthesis and characterization of metallic nanoparticles impregnated onto activated carbon using leaf extract of Mukia maderasapatna : Evaluation of antimicrobial activities. Microbial Pathogenesis, 97, 198–203
  10. Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. (2009). Introduction to spectroscopy (4th ed.). Boston: Cengage Learning
  11. Hossain, M. A. (2013). Synthesis of Carbon Nanoparticles from Kerosene and their Characterization by SEM⁄EDX, XRD and FTIR. American Journal of Nanoscience and Nanotechnology, 1(2), 52–56
  12. Khalili, S., Khoshandam, B., & Jahanshahi, M. (2016). Synthesis of activated carbon/polyaniline nanocomposites for enhanced CO2 adsorption. RSC Advances, 6(42), 35692–35704
  13. Wibawa, P.J.; Nur, M.; Asy’ari, M.; Nur, H. SEM, XRD and FTIR analyses of both ultrasonic and heat generated activated carbon black microstructures. Heliyon 2020, 6, e03546
  14. Guo, B., Zebda, R., Drake, S. J., & Sayes, C. M. (2009). Synergistic Effect of Co-exposure to Carbon Black and Fe2O3 Nanoparticles on Oxidative Stress in Cultured Lung Epithelial Cells. Particle and Fibre Toxicology, 6(4), 1–13
  15. Kaushik, J., & Kundu, N. (2018). Phytochemical Screening , Anti-oxidant and Anti- Microbial Activity of Polyphenolic Flavonoids Isolated from fruit of Ananas comosus in various solvents. International Journal of Scientific and Research Publications, 8(2), 31–55
  16. de Mol, N., & Fischer, J. E. M. (2010). Surface Plasmon Resonance: A General Introduction. In Surface Plasmon Resonance: Methods and Protocols (Vol. 627, pp. 1–14). New York: Springer
  17. Link, S., & El-Sayed, M. A. (2003). Optical Properties and Ultrafast Dynamics of Metallic Nanocrystals. Annu. Rev. Phys. Chem., 54(1), 331–366
  18. Smitha, S. L., Nissamudeen, K. M., Philip, D., & Gopchandran, K. G. (2008). Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochimica Acta. Part A, 71(1), 186–190
  19. Wibawa, P.J.; Nur, M.; Asy’ari, M.; Wijanarka, W.; Susanto,H.; Sutanto, H.; Nur, H. (2021). Green Synthesized Silver Nanoparticles Immobilized on Activated Carbon Nanoparticles: Antibacterial Activity Enhancement Study and Its Application on Textiles Fabrics, Molecules 2021, 26, 3790
  20. Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv., 4, 3974–3983
  21. Muthoosamy, K., & Manickam, S. (2017). State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation and functionalization of graphene derivatives. Ultrasonics Sonochemistry, 39, 478–493
  22. Abbaszadegan, A., Ghahramani, Y., Gholami, A., Hemmateenejad, B., Dorostkar, S., Nabavizadeh, M., & Sharghi, H. (2015). The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study. Journal of Nanomaterials, 2015, 1–8

Last update:

No citation recorded.

Last update:

No citation recorded.