skip to main content

Profil Antibiotik Pasien COVID-19 di RSUD Dr. Moewardi Surakarta

*Rini Budi Astuti  -  Program Studi Profesi Apoteker, Universitas Sebelas Maret, Jalan Ir. Sutami 36 Kentingan, Jebres, Surakarta, Jawa Tengah. Indonesia 57126., Indonesia
Tri Murtati Andayani scopus  -  Fakultas Farmasi, Universitas Gadjah Mada, Yogyakarta, Indonesia
Received: 5 Jan 2025; Revised: 9 Jan 2025; Accepted: 10 Jan 2025; Available online: 16 Jan 2025; Published: 15 Jan 2025.
Open Access Copyright 2025 Generics: Journal of Research in Pharmacy

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

COVID-19 merupakan penyakit menular yang berasal dari Wuhan dan menyebar ke seluruh dunia. Antibiotik merupakan salah satu terapi yang diberikan kepada pasien COVID-19. Akhir – akhir ini ditemukan berbagai macam interaksi obat pada pasien COVID-19. Penelitian ini bertujuan untuk mengetahui gambaran antibiotik meliputi pola pemberian antibiotik dan potensi interaksi antibiotik dengan obat lain yang diberikan yang diberikan pada pasien COVID-19 di RSUD Dr. Moewardi Surakarta. Penelitian ini merupakan penelitian deskriptif dengan menggunakan metode cross sectional. Subjek penelitian merupakan pasien COVID-19 yang menjalani rawat inap di RSUD Dr. Moewardi Surakarta periode Januari 2021 – Maret 2021. Sumber data yang digunakan adalah catatan rekam medis pasien. Analisis data dilakukan secara kualitatif dan kuantitatif. Demografi pasien, jenis kelamin, kelompok usia, jenis antibiotik yang diberikan dianalisis secara kuantitatif. Potensi interaksi obat dianalisis secara kualitatif. Hasil penelitian menunjukkan bahwa 93,2% pasien COVID-19 di RSUD Dr. moewardi Surakarta menerima terapi antibiotik. Antibiotik diberikan secara tunggal, kombinasi maupun dengan cara penggantian. Antibiotik tunggal yang paling banyak digunakan adalah azitromisin (71,8%). Terdapat 47 potensi interaksi pada level moderate antara antibiotik dengan obat lain yang dierikan pada pasien COVID-19 di RSUD Dr. Moewardi Surakarta. Potensi interaksi terbanyak antara azitromisin – enoksaparin (40,4%) yang berpotensi meningkatkan resiko pendarahan.

Fulltext View|Download
Keywords: azitromisin; interaksi; pola; pendarahan.

Article Metrics:

  1. Acharya, S. et al. (2019) ‘Prevalence of Potential Drug-Drug Interactions in the Intensive Care Unit of a Tertiary Care Hospital: A Cross-Sectional Study’, Journal of Young Pharmacists, 11(2), pp. 197–201. Available at: https://doi.org/10.5530/jyp.2019.11.41
  2. Arnold, F.W. and Fuqua, J.L. (2020) ‘Viral respiratory infections: a cause of community-acquired pneumonia or a predisposing factor?’, Current Opinion in Pulmonary Medicine, 26(3), p. 208. Available at: https://doi.org/10.1097/MCP.0000000000000666
  3. B, F. et al. (2020) ‘An Observational Study of QTc Prolongation in Critically Ill Patients: Identification of Incidence and Predictors’, Indian journal of critical care medicine : peer-reviewed, official publication of Indian Society of Critical Care Medicine, 24(4). Available at: https://doi.org/10.5005/jp-journals-10071-23411
  4. Badan Pusat Statistik Kota Surakarta (2021) Kota Surakarta dalam Angka 2021. BPS Kota Surakarta
  5. Baggio, D. and Ananda-Rajah, M.R. (2021) ‘Fluoroquinolone antibiotics and adverse events’, Australian Prescriber, 44(5), pp. 161–164. Available at: https://doi.org/10.18773/austprescr.2021.035
  6. Bajracharya, N. et al. (2018) ‘Incidence of Drug-Drug Interactions among Patients Admitted to the Department of General Medicine in a Tertiary Care Hospital’, Journal of Young Pharmacists, 10(4), pp. 450–455. Available at: https://doi.org/10.5530/jyp.2018.10.98
  7. Berbudi, A. et al. (2020) ‘Type 2 Diabetes and its Impact on the Immune System’, Current Diabetes Reviews, 16(5), pp. 442–449. Available at: https://doi.org/10.2174/1573399815666191024085838
  8. Bié, S.M.G. et al. (2022) ‘Combinations and Risks of Drug Interactions in Patients Admitted to a University Hospital in a Northeastern Brazilian State’, Medical Sciences Forum, 12(1), p. 28. Available at: https://doi.org/10.3390/eca2022-12750
  9. Bunyavanich, S., Do, A. and Vicencio, A. (2020) ‘Nasal Gene Expression of Angiotensin-Converting Enzyme 2 in Children and Adults’, JAMA, 323(23), pp. 2427–2429. Available at: https://doi.org/10.1001/jama.2020.8707
  10. Cattaneo, D. et al. (2020) ‘Drug–Drug Interactions and Prescription Appropriateness in Patients with COVID-19: A Retrospective Analysis from a Reference Hospital in Northern Italy’, Drugs & Aging, 37(12), pp. 925–933. Available at: https://doi.org/10.1007/s40266-020-00812-8
  11. Cattaneo, D., Gervasoni, C. and Corona, A. (2022) ‘The Issue of Pharmacokinetic-Driven Drug-Drug Interactions of Antibiotics: A Narrative Review’, Antibiotics, 11(10), p. 1410. Available at: https://doi.org/10.3390/antibiotics11101410
  12. Chibabhai, V. et al. (2020) ‘Collateral damage of the COVID-19 pandemic: Exacerbation of antimicrobial resistance and disruptions to antimicrobial stewardship programmes?’, South African Medical Journal, 110(7), pp. 572–573. Available at: https://doi.org/10.7196/SAMJ.2020.v110i7.14917
  13. Dighriri, I. et al. (2021) ‘Detect Drug Interactions with Metronidazole’, Journal of Pharmaceutical Research International, pp. 597–604. Available at: https://doi.org/10.9734/jpri/2021/v33i47A33049
  14. Echeverría-Esnal, D. et al. (2021) ‘Azithromycin in the treatment of COVID-19: a review’, Expert Review of Anti-infective Therapy, 19(2), pp. 147–163. Available at: https://doi.org/10.1080/14787210.2020.1813024
  15. Fang, L., Karakiulakis, G. and Roth, M. (2020) ‘Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?’, The Lancet. Respiratory Medicine, 8(4), p. e21. Available at: https://doi.org/10.1016/S2213-2600(20)30116-8
  16. Farida, Y. et al. (2020) ‘Profil Pasien dan Penggunaan Antibiotik pada Kasus Community-Acquired Pneumonia Rawat Inap di Rumah Sakit Akademik wilayah Sukoharjo’, JPSCR: Journal of Pharmaceutical Science and Clinical Research, 5(2), pp. 151–164. Available at: https://doi.org/10.20961/jpscr.v5i2.39763
  17. Feldman, C. and Anderson, R. (2021) ‘The role of co-infections and secondary infections in patients with COVID-19’, Pneumonia, 13(1), p. 5. Available at: https://doi.org/10.1186/s41479-021-00083-w
  18. Fernandes, F.M. et al. (2019) ‘Assessment of the risk of QT-interval prolongation associated with potential drug-drug interactions in patients admitted to Intensive Care Units’, Saudi Pharmaceutical Journal, 27(2), pp. 229–234. Available at: https://doi.org/10.1016/j.jsps.2018.11.003
  19. Hoffmann, M. et al. (2020) ‘SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor’, Cell, 181(2), pp. 271-280.e8. Available at: https://doi.org/10.1016/j.cell.2020.02.052
  20. Jyotsna, M. and Hemalatha, Y. (2020) ‘Drug–Drug, Drug–Disease and Disease–Disease Interactions in COVID-19 with Cardiovascular Diseases (CVDs)’, Indian Journal of Cardiovascular Disease in Women WINCARS, 5, pp. 216–222. Available at: https://doi.org/10.1055/s-0040-1716786
  21. KPRA RSUD Dr. Moewardi and KPTI RSUD Dr. Moewardi (2019) ‘Panduan Penggunaan Antibiotik Profilaksis Dan Terapi RSUD Dr. Moewardi’
  22. Kumar, D. and Trivedi, N. (2021) ‘Disease-drug and drug-drug interaction in COVID-19: Risk and assessment’, Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 139, p. 111642. Available at: https://doi.org/10.1016/j.biopha.2021.111642
  23. Lisni, I., Mujianti, D. and Anggriani, A. (2021) ‘ANTIBIOTIC PROFILE FOR COVID-19 TREATMENT IN A HOSPITAL IN BANDUNG’, 12(2)
  24. Mahboobipour, A.A. and Baniasadi, S. (2021) ‘Clinically important drug–drug interactions in patients admitted to hospital with COVID-19: drug pairs, risk factors, and management’, Drug Metabolism and Personalized Therapy, 36(1), pp. 9–16. Available at: https://doi.org/10.1515/dmpt-2020-0145
  25. Majcher-Peszynska, J. et al. (2014) ‘Ampicillin/sulbactam in elderly patients with community-acquired pneumonia’, Infection, 42(1), pp. 79–87. Available at: https://doi.org/10.1007/s15010-013-0518-8
  26. Morris, D.E., Cleary, D.W. and Clarke, S.C. (2017) ‘Secondary Bacterial Infections Associated with Influenza Pandemics’, Frontiers in Microbiology, 8. Available at: https://doi.org/10.3389/fmicb.2017.01041
  27. Ng, T.M. et al. (2022) ‘Antibiotic Therapy in the Treatment of COVID-19 Pneumonia: Who and When?’, Antibiotics, 11(2), p. 184. Available at: https://doi.org/10.3390/antibiotics11020184
  28. Nieuwlaat, R. et al. (2021) ‘Coronavirus Disease 2019 and Antimicrobial Resistance: Parallel and Interacting Health Emergencies’, Clinical Infectious Diseases, 72(9), pp. 1657–1659. Available at: https://doi.org/10.1093/cid/ciaa773
  29. Nyamagoud, D.S. (2018) ‘QT Prolongation Associated with Multiple Drug-Drug Interactions’
  30. Oksuz, E. et al. (2019) ‘Drug-drug interactions in intensive care units and potential clinical consequences of these interactions’, Annals of Medical Research, 26(10), pp. 2158–2163
  31. Patel, P.H. and Hashmi, M.F. (2024) ‘Macrolides’, in StatPearls. Treasure Island (FL): StatPearls Publishing. Available at: http://www.ncbi.nlm.nih.gov/books/NBK551495/ (Accessed: 7 October 2024)
  32. Podder, V., Patel, P. and Sadiq, N.M. (2024) ‘Levofloxacin’, in StatPearls. Treasure Island (FL): StatPearls Publishing. Available at: http://www.ncbi.nlm.nih.gov/books/NBK545180/ (Accessed: 28 September 2024)
  33. Ramírez-Soto, M.C., Arroyo-Hernández, H. and Ortega-Cáceres, G. (2021) ‘Sex differences in the incidence, mortality, and fatality of COVID-19 in Peru’, PloS One, 16(6), p. e0253193. Available at: https://doi.org/10.1371/journal.pone.0253193
  34. Raouf, S. et al. (2021) ‘A Study of Using Anticoagulants in a Tertiary Care Hospital in Bangalore: A Prospective Study’, Journal of Health Sciences & Surveillance System, 9(4), pp. 286–290. Available at: https://doi.org/10.30476/jhsss.2021.91553.1212
  35. Rawson, T.M. et al. (2020) ‘Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing’, Clinical Infectious Diseases, 71(9), pp. 2459–2468. Available at: https://doi.org/10.1093/cid/ciaa530
  36. Sanyaolu, A. et al. (2020) ‘Comorbidity and its Impact on Patients with COVID-19’, SN comprehensive clinical medicine, 2(8), pp. 1069–1076. Available at: https://doi.org/10.1007/s42399-020-00363-4
  37. Shereen, M.A. et al. (2020) ‘COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses’, Journal of Advanced Research, 24, pp. 91–98. Available at: https://doi.org/10.1016/j.jare.2020.03.005
  38. Sinto, R. (2020) ‘Peran Penting Pengendalian Resistensi Antibiotik pada Pandemi COVID-19’, Jurnal Penyakit Dalam Indonesia, 7(4). Available at: https://doi.org/10.7454/jpdi.v7i4.533
  39. Statsenko, Y. et al. (2021) ‘Impact of Age and Sex on COVID-19 Severity Assessed From Radiologic and Clinical Findings’, Frontiers in Cellular and Infection Microbiology, 11, p. 777070. Available at: https://doi.org/10.3389/fcimb.2021.777070
  40. Taner, N. et al. (2022) ‘Evaluation of Drug-Drug Interactions and Side Effects in COVID-19 Patients in an Intensive Care Unit’, Cyprus Journal of Medical Sciences, 7(2), pp. 167–174. Available at: https://doi.org/10.4274/cjms.2021.2021-4
  41. Upreti, A.R. et al. (2020) ‘Assessment of Potential Drug-Drug Interactions and its Associated Factors in Medical Intensive Care Unit of a Tertiary Care Hospital in Nepal’, Nepal Medical College Journal, 22(4), pp. 228–232. Available at: https://doi.org/10.3126/nmcj.v22i4.34186
  42. Vega, A.J. et al. (2023) ‘Warfarin and Antibiotics: Drug Interactions and Clinical Considerations’, Life, 13(8), p. 1661. Available at: https://doi.org/10.3390/life13081661
  43. Verdecchia, P. et al. (2020) ‘The pivotal link between ACE2 deficiency and SARS-CoV-2 infection’, European Journal of Internal Medicine, 76, pp. 14–20. Available at: https://doi.org/10.1016/j.ejim.2020.04.037
  44. Zhang, Z. et al. (2019) ‘Comparison of in vitro synergistic effect between clarithromycin or azithromycin in combination with amikacin against Mycobacterium intracellulare’, Journal of Global Antimicrobial Resistance, 18, pp. 183–186. Available at: https://doi.org/10.1016/j.jgar.2019.03.017

Last update:

No citation recorded.

Last update:

No citation recorded.