skip to main content

Wound Healing Response to Full-Thickness Skin Defect Sprague Dawley Rats Given Ozonated Black Cumin Oil Viewing from The Profile of Neutrophil and Macrophage Count

*Igor Rizkia Syahputra  -  Departement of Biomedic, Faculty of Medicine,Universitas Diponegoro,Jl. Prof Sudarto,SH,Tembalang,Semarang, Indonesia 50275, Indonesia
Open Access Copyright (c) 2022 Diponegoro International Medical Journal
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The incidence of wounds keeps increasing and inadequate treatment can cause the wound to become infected. Ozone has antibacterial properties and can help activate pro-inflammatory agents in the wound healing process; one of the methods is oil ozonation, for example with black cumin oil. Topical administration of black cumin plays a role in wound healing because of its antibacterial and antifungal properties, and plays a role in increasing the epitalization process. To determine the effectiveness of applying ozonated black cumin oil (Nigella sativa) on the healing process of full-thickness skin defects in Sprague Dawley rats, in terms of the number of macrophage and neutrophil cells. This research was an experimental study with a post-test only control group design method. Total sample of 48 Sprague Dawley rats was divided into 6 groups. The first group was given gentamicin ointment, the second group was given 0.9% normal saline, the third to the fifth group was given ozone black with doses of ozone respectively, namely 1400 mg/ml, 1800 mg/ml and 2200 mg/ml. Incision for taking the tissue samples was held on the 3rd and 7th day according to the treatment group. The tissue samples were subjected to histopathological examination with HE staining. A significant decrease in neutrophil levels occurred at the dose of 1,400mg/ml ozonated black cumin oil on day 7 (p=<0.001), dose of 1,800 mg/ml on day 3 (p=0.021) and day 7 (p=<0.001), doses of 2,200mg/ml at day 3 (p=0.020) and day 7 (p=<0.001) compared with a positive control group (given gentamicin). A significant decrease in macrophage levels occurred at a dose of 1,400mg/ml on day 3 (p=0.037) and 7 (p=0.019), a dose of 1,800 mg/ml on day 3 (p <0.001) and 7 (p=0.020), dose 2,200mg/ml on day 3 (p=<0.001) and day 7 (p=0.020).

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Results
Respon Penyembuhan Luka pada Full-Thickness Skin Defect Tikus Sprague Dawley yang Diberikan Minyak Jintan Hitam Terozonisasi Dilihat dari Profil Jumlah Neutrofil dan Jumlah Makrofag
Subject Full-thickness skin defect, minyak jintan terozonisasi, neutrofil
Type Research Results
  Download (7MB)    Indexing metadata
Keywords: Full-thickness skin defect,macrophage, ozonated cumin oil,neutrophile
Funding: Universitas Diponegoro under contract MetMu123456

Article Metrics:

  1. Kartika RW, Bedah B, Paru J, Luka AP. Perawatan Luka Kronis dengan Modern Dressing. 2015;42(7):546–50
  2. Steiner CA, Karaca Z, Moore BJ, Imshaug MC, Pickens G. Surgeries in Hospital-Based Ambulatory Surgery and Hospital Inpatient Settings 2014. Rockville, MD: Agency for HealthCare Research and Quality (AHRQ)
  3. McDermott KW, Weiss AJ, Elixhauser A. Burn-Related Hospital Inpatient Stays and Emergency Department Visits, 2013. Rockville, Maryland: Agency for Healthcare Research and Quality AHRQ
  4. Martinengo L, Olsson M, Bajpai R, Soljak M, Upton Z, Schmidtchen A, et al. Prevalence of chronic wounds in the general population: systematic review and meta-analysis of observational studies. Ann Epidemiol. 2019;29:8–15
  5. Cañedo-dorantes L, Cañedo-ayala M. Skin Acute Wound Healing : A Comprehensive Review. 2019;2019
  6. Tracy LE, Minasian RA, Caterson EJ. Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care (New Rochelle) 2016; 5:119–36
  7. Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther 2017; 34:599–610
  8. Wang PH ,Huang BS ,Horng HC ,Yeh CC ,Chen YJ . Wound healing. J Chin Med Assoc 2018;81:94–101
  9. M, Saga.i, V B. Mechanisms of Action Involved in Ozone Therapy: Is Healing Induced Via a Mild Oxidative Stress? Med Gas Res. 2011;1(29)
  10. Fitzpatrick E, Holland OJ, Vanderlelie JJ. Ozone therapy for the treatment of chronic wounds : A systematic review. 2018;(October 2017):1–12
  11. Gonzalez ACde O, Costa TF, Andrade Zde A, Medrato ARAP. Wound healing - a literature review. An Bras Dermatol 2016;91:614–20
  12. Carata E, Anna Tenuzzo B, Dini L. Powerful Properties of Ozonated Extra Virgin Olive Oil. Herb Med. 2019;
  13. Serio F, Pizzolante G, Cozzolino G, D’Alba M, Bagordo F, De Giorgi M, et al. A New Formulation Based on Ozonated Sunflower Seed Oil: In Vitro Antibacterial and Safety Evaluation. Ozone Sci Eng. 2017;39(3):139–47
  14. Rodrigues De Almeida Kogawa N, José De Arruda E, Micheletti AC, De Fatima Cepa Matos M, Silva De Oliveira LC, Pires De Lima D, et al. Synthesis, characterization, thermal behavior, and biological activity of ozonides from vegetable oils. RSC Adv. 2015;5(80):65427–36
  15. Rizaoglu T. Effects of Ozonated Oils (Sesame Oil, Nigella sativa Oil, and Hypericium perforatum Oil) on Wound Healing Process in Rats. Gov Polit Contemp Middle East Contin Chang. 2018;77–116
  16. Hibono MM. Pemberian Minyak Jintan Hitam ( Nigella sativa ) Topikal Meningkatkan Regenerasi Jaringan Luka Tikus Diabetes Melitus. E-Journal Indones J Anti Aging Med. 2017;1(1):25–31
  17. Yang WT, Ke CY, Wu WT, Harn HJ, Tseng YH, Lee RP. Effects of Angelica dahurica and Rheum officinale Extracts on Excisional Wound Healing in Rats. Evidence-based Complement Altern Med. 2017;2017
  18. Junaedi, Edi., Yulianti, Sufrida. Suty, SUrnahika. Kuncari ES. Kedahsyatan Habbatussauda Mengobati Berbagai Penyakit. Jakarta: AgroMedia Pustaka; 2011
  19. Yimer EM, Tuem KB, Karim A, Ur-Rehman N, Anwar F. Nigella sativa L. (Black Cumin): A Promising Natural Remedy for Wide Range of Illnesses. Evidence-based Complement Altern Med. 2019;2019
  20. H. A. El Rabey,. M. N. Al-Seeni ASB. The antidiabetic activity of Nigella sativa and propolis on streptozotocin-induced diabetes and diabetic nephropathy in male rats. Evidence-Based Complement Altern Med. 2017;14
  21. A, Badar., H, Kaatabi., A B et al. Effect of Nigella sativa Supplementation over a One-year Period on Lipid Levels, Blood Pressure and Heart Rate in Type-2 Diabetic Patients Receiving Oral Hypoglycemic Agents: Nonrandomized Clinical Trial. Ann Saudi Med. 2017;37(1):56–63.​
  22. V. S. Periasamy., J. Athinarayanan. AAA. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrason Sonochem. 2016;31:449–55
  23. Kooti W, Hasanzadeh-Noohi Z, Sharafi-Ahvazi N, Asadi-Samani M, Ashtary-Larky D. Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chin J Nat Med. 2016;14(10):732–45
  24. Genatrika, Erza., Nurkhikmah, Isna., Hapsari I. Formulasi Sediaan Krim Minyak Jintan Hitam (Nigella sativa L.) sebagai Antijerawat terhadap Bakteri Propionibacterium acnes. Pharmacy. 2016;13(2)
  25. Aydin, M S., Kocarslan, A., Kocarslan, S., Kucuk, A., Eser, İ., Sezen H. Thymoquinone Protects End Organs from Abdominal Aorta Ischemia/Reperfusion Injury in a Rat Model. Rev Bras Cir Cardiovasc. 2015;30:77–83
  26. Amin, Bahareh, Hosseinzadeh H. Black Cumin (Nigella sativa) and Its Active Constituent, Thymoquinone: An Overview on the Analgesic and Anti-inflammatory Effects. Planta Med. 2016;82:8–16
  27. Yari S, Kopaei R. Effect of Hydroethanolic Extract of Nigella sativa L . on Skin Wound Healing Process in Diabetic Male Rats. 2019;1–7
  28. Sarheed O, Ahmed A, Shouqair D, Boateng J. Antimicrobial Dressings for Improving Wound Healing. In: Wound Healing - New insights into Ancient Challenges [Internet]. InTech; 2016. Available from: http://www.intechopen.com/books/wound-healing-new-insights-into-ancient-challenges/antimicrobial-dressings-for-improving-wound-healing
  29. Chaves BJ, Tadi P. Gentamicin [Internet]. StatPearls. 2021. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32491482
  30. Richardson ET, Shukla S, Nagy N, Boom WH, Beck RC, Zhou L, et al. ERK signaling is essential for macrophage development. PLoS One. 2015;10(10)
  31. Menendez-cepero S, Marques-magallanes-regojo JA, Hernandez-martinez A, Javier F, Tallón H. Therapeutic Effects of Ozone Therapy that Justifies Its Use for the Treatment of COVID-19. J Neurol Neurocritical Care. 2020;3(1):1–6
  32. Cattel F, Giordano S, Bertiond C, Lupia T, Corcione S, Scaldaferri M, et al. Ozone therapy in COVID-19: A narrative review. Virus Res [Internet]. 2021 Jan;291(January):198207
  33. Ugazio E, Tullio V, Binello A, Tagliapietra S, Dosio F. Ozonated oils as antimicrobial systems in topical applications. Their characterization, current applications, and advances in improved delivery techniques. Molecules. 2020;25(2):1–24
  34. Barone P. Oxygen-ozone therapy in a multidisciplinary day surgery: Design and applications. Ozone Ther. 2017;2(2)
  35. Smith N, Wilson A, Gandhi J, Vatsia S, Khan S. Ozone therapy: An overview of pharmacodynamics, current research, and clinical utility. Med Gas Res. 2017;7(3):212–9
  36. Anzolin A, Da Silveira-Kaross N, Bertol C. Ozonated oil in wound healing: What has already been proven? Med Gas Res. 2020;10(1):54–9
  37. Kushmakov R, Gandhi J, Seyam O, Jiang W, Joshi G, Smith NL, et al. Ozone therapy for diabetic foot. Med Gas Res. 2018;8(3):111–5
  38. Peng H, Xian D, Liu J, Pan S, Tang R, Zhong J. Regulating the Polarization of Macrophages: A Promising Approach to Vascular Dermatosis. J Immunol Res. 2020;2020
  39. Lailler C, Louandre C, Morisse MC, Lhossein T, Godin C, Lottin M, et al. ERK1/2 signaling regulates the immune microenvironment and macrophage recruitment in glioblastoma. Biosci Rep. 2019;39(9):1–12
  40. Boudiaf K, Hurtado-Nedelec M, Belambri SA, Marie J-C, Derradji Y, Benboubetra M, et al. Thymoquinone strongly inhibits fMLF-induced neutrophil functions and exhibits anti-inflammatory properties in vivo. Biochem Pharmacol [Internet]. 2016 Mar;104:62–73
  41. Yao Y, Zhang H, Wang Z et al. Reactive oxygen species (ROS)-responsive biomaterials mediate tissue microenvironments and tissue regeneration. J Mater Chem B. 2019;7(33):5019–33

Last update:

No citation recorded.

Last update:

No citation recorded.