skip to main content

Biopriming Technology to Enhance Germination Rate and Beneficial Microbial Colonization in Oil Palm (Elaeis guineensis) Seeds

"Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Open Access Copyright 2025 Buletin Anatomi dan Fisiologi

Citation Format:
Abstract

Biopriming is an innovative technique to enhance seed germination and health by promoting beneficial microbial colonization. This study evaluates the effects of biopriming using a consortium of beneficial microbes containing Bacillus subtilis, Bacillus pumilus, Bacillus cereus, Pseudomonas sp., and Rhizobium sp. on germination performance and microbial dynamics in oil palm (Elaeis guineensis) seeds. A randomized complete block design with a factorial approach was applied, involving three soaking treatments (NB formula, Effervescent formula and water as a control) and three seed varieties (Nirmala, Lestari, Sejahtera). The results indicate that biopriming significantly increased the abundance of nitrogen-fixing and phosphate-solubilizing bacteria before and after germination, positively impacting seed germination rates. Nirmala and Lestari varieties exhibited significant improvements in germination, whereas Sejahtera showed no substantial difference..This study confirms that microbial biopriming holds great potential for large-scale oil palm seed production, supporting sustainable agricultural practices. Further research is required to optimize microbial formulations and assess the long-term effects on plant productivity.

Fulltext
Keywords: Biopriming, benefecial microbes, germination, nitrogen-fixing microbes, phosphate-solubilizing bacteria, oil palm

Article Metrics:

  1. Akram, W., Waqar, S., Hanif, S., Anjum, T., Aftab, Z., Li, G., … & Umer, M. (2024). Comparative effect of seed coating and biopriming of bacillus aryabhattai z-48 on seedling growth, growth promotion, and suppression of fusarium wilt disease of tomato plants. Microorganisms, 12(4), 792. https://doi.org/10.3390/microorganisms12040792
  2. Bashyal, B. M., Parmar, P., Zaidi, N. W., & Aggarwal, R. (2021). Molecular programming of drought-challenged trichoderma harzianum-bioprimed rice (oryza sativa l.). Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.655165
  3. Bukhari, S. A., Farah, N., Mustafa, G., Ahmed, S., & Albeshr, M. F. (2024). Biopriming of momordica charantia seeds with enterobacter to improve nutritional and biochemical attributes. Journal of Food Quality, 2024, 1-15. https://doi.org/10.1155/2024/8012474
  4. Brahim, A. H., Ali, M. B., Daoud, L., Jlidi, M., Akremi, I., Hmani, H., … & Ali, M. B. (2022). Biopriming of durum wheat seeds with endophytic diazotrophic bacteria enhances tolerance to fusarium head blight and salinity. Microorganisms, 10(5), 970. https://doi.org/10.3390/microorganisms10050970
  5. Das, S., Kundu, S., Meena, K., Jha, R., Varma, A., Bahuguna, R., … & Tripathi, S. (2023). Seed biopriming with potential bioagents influences physiological processes and plant defense enzymes to ameliorate sheath blight induced yield loss in rice (oryza sativa l.). World Journal of Microbiology and Biotechnology, 39(5). https://doi.org/10.1007/s11274-023-03576-6
  6. Dutta, B., Datta, A., Dey, A., Ghosh, A., & Bandopadhyay, R. (2023). Establishment of seed biopriming in salt stress mitigation of rice plants by mangrove derived bacillus sp.. Biocatalysis and Agricultural Biotechnology, 48, 102626. https://doi.org/10.1016/j.bcab.2023.102626
  7. El‐Sayed, A., Dief, H., Hashem, E., Desouky, A., Shah, Z., & Fawzan, S. (2022). Fungal biopriming increases the resistance of wheat to abiotic stress. Journal of Plant Biotechnology, 49(2), 107-117. https://doi.org/10.5010/jpb.2022.49.2.107
  8. El-Wakil, D. and Essa, A. (2020). Antagonistic potential of some bacterial strains against xanthomonas campestris, the cause of bacterial blight in hordeum vulgare. Bioresources, 15(2), 4205-4216. https://doi.org/10.15376/biores.15.2.4205-4216
  9. Fiodor, A., Ajijah, N., Dziewit, Ł., & Pranaw, K. (2023). Biopriming of seed with plant growth-promoting bacteria for improved germination and seedling growth. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1142966
  10. Forni, C. and Borromeo, I. (2023). The utilization of seed priming as a tool to overcome salt and drought stresses: is still a long way to go?. Seeds, 2(4), 406-420. https://doi.org/10.3390/seeds2040031
  11. Forti, C., Shankar, A., Singh, A., Balestrazzi, A., Prasad, V., & Macovei, A. (2020). Hydropriming and biopriming improve medicago truncatula seed germination and upregulate dna repair and antioxidant genes. Genes, 11(3), 242. https://doi.org/10.3390/genes11030242
  12. Ha-Tran, D. M., Nguyen, T. T. M., Hung, S. W., Huang, E., & Huang, C. (2021). Roles of plant growth-promoting rhizobacteria (pgpr) in stimulating salinity stress defense in plants: a review. International Journal of Molecular Sciences, 22(6), 3154. https://doi.org/10.3390/ijms22063154
  13. Jovičić‐Petrović, J., Karličić, V., Petrović, I., Ćirković, S., Ristić‐Djurović, J., & Raičević, V. (2021). Biomagnetic priming—possible strategy to revitalize old mustard seeds. Bioelectromagnetics, 42(3), 238-249. https://doi.org/10.1002/bem.22328
  14. Kumar, A. (2022). Microbial biocontrol: sustainable agriculture and phytopathogen management.. https://doi.org/10.1007/978-3-030-87512-1
  15. Kumar, R. (2025). Impact of mineral nutrition and biopriming on crop performance, energetics, and the carbon footprint in rainfed castor bean (ricinus communis l.). Energy Nexus, 17, 100370. https://doi.org/10.1016/j.nexus.2025.100370
  16. Li, H., Yue, H., Li, L., Yu, L., Zhang, H., Wang, J., … & Jiang, X. (2021). Seed biostimulant bacillus sp. mgw9 improves the salt tolerance of maize during seed germination. AMB Express, 11(1). https://doi.org/10.1186/s13568-021-01237-1
  17. Mageshwaran, V., Gupta, R., Singh, S., Sahu, P. K., Singh, U. B., Chakdar, H., … & Singh, H. V. (2022). Endophytic bacillus subtilis antagonize soil-borne fungal pathogens and suppress wilt complex disease in chickpea plants (cicer arietinum l.). Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.994847
  18. Nawaz, H., Hussain, N., Jamil, M., Yasmeen, A., Bukhari, S., Aurangzaib, M., … & Usman, M. (2020). Seed biopriming mitigates terminal drought stress at reproductive stage of maize by enhancing gas exchange attributes and nutrient uptake. Turkish Journal of Agriculture and Forestry, 44(3), 250-261. https://doi.org/10.3906/tar-1904-51
  19. Neto, H., Freiria, G., Silva, A., Ponce, R., & Takahashi, L. (2023). Snap bean production from seeds treated with bacillus subtilis. Pesquisa Agropecuária Tropical, 53. https://doi.org/10.1590/1983-40632023v5376324
  20. Osman, N. Y., Ahmad-Hamdani, M. S., Oslan, S. N., Zulperi, D., Hashim, A. M., & Saidi, N. B. (2024). Bacteria as potential biocontrol agents for managing purple witchweed (striga hermonthica) in grain sorghum. Weed Science, 72(5), 646-653. https://doi.org/10.1017/wsc.2024.42
  21. Pandey, C., Christensen, A., Jensen, M., Rechnagel, E., Gram, K., & Roitsch, T. (2024). Stimulation of arabidopsis thaliana seed germination at suboptimal temperatures through biopriming with biofilm-forming pgpr pseudomonas putida kt2440. Plants, 13(19), 2681. https://doi.org/10.3390/plants13192681
  22. Patel, M., Islam, S., Husain, F., Yadav, V., Park, H., Yadav, K., … & Patel, A. (2023). Bacillus subtilis er-08, a multifunctional plant growth-promoting rhizobacterium, promotes the growth of fenugreek (trigonella foenum-graecum l.) plants under salt and drought stress. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1208743
  23. Pérez-García, L., Sáenz‐Mata, J., Fortis-Hernández, M., Navarro-Muñoz, C. E., Palacio-Rodríguez, R., & Preciado-Rangel, P. (2023). Plant-growth-promoting rhizobacteria improve germination and bioactive compounds in cucumber seedlings. Agronomy, 13(2), 315. https://doi.org/10.3390/agronomy13020315
  24. Rashi and Kaushik, N. (2024). Enhancing germination percentage and seed vigor in horticultural crops through biopriming techniques. Bio Web of Conferences, 110, 01012. https://doi.org/10.1051/bioconf/202411001012
  25. Reis, M. N. O., Vitorino, L. C., Lourenço, L. L., & Bessa, L. A. (2022). Microbial inoculation improves growth, nutritional and physiological aspects of glycine max (l.) merr.. Microorganisms, 10(7), 1386. https://doi.org/10.3390/microorganisms10071386
  26. Roslan, M. A. M., Zulkifli, N. N., Sobri, Z. M., Zuan, A. T. K., Cheak, S. C., & Rahman, N. A. A. (2020). Seed biopriming with p- and k-solubilizing enterobacter hormaechei sp. improves the early vegetative growth and the p and k uptake of okra (abelmoschus esculentus) seedling. Plos One, 15(7), e0232860. https://doi.org/10.1371/journal.pone.0232860
  27. Singh, A., Patani, A., Patel, M., Vyas, S., Verma, R. K., Amari, A., … & Patel, A. (2024). Tomato seed bio-priming with pseudomonas aeruginosa strain par: a study on plant growth parameters under sodium fluoride stress. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1330071
  28. Singh, P., Singh, J., Ray, S., Rajput, R., Vaishnav, A., Singh, R., … & Singh, H. (2020). Seed biopriming with antagonistic microbes and ascorbic acid induce resistance in tomato against fusarium wilt. Microbiological Research, 237, 126482. https://doi.org/10.1016/j.micres.2020.126482
  29. Singh, S., Singh, U., Trivedi, M., Sahu, P., Paul, S., Paul, D., … & Saxena, A. (2019). Seed biopriming with salt-tolerant endophytic pseudomonas geniculata-modulated biochemical responses provide ecological fitness in maize (zea mays l.) grown in saline sodic soil. International Journal of Environmental Research and Public Health, 17(1), 253. https://doi.org/10.3390/ijerph17010253
  30. Singh, P., Vaishnav, A., Liu, H., Xiong, C., Singh, H. B., & Singh, B. K. (2023). Seed biopriming for sustainable agriculture and ecosystem restoration. Microbial Biotechnology, 16(12), 2212-2222. https://doi.org/10.1111/1751-7915.14322
  31. Soliman, M. H., Abdulmajeed, A. M., Alhaithloul, H. A. S., Alharbi, B. M., El‐Esawi, M. A., Hasanuzzaman, M., … & Elkelish, A. (2020). Saponin biopriming positively stimulates antioxidants defense, osmolytes metabolism and ionic status to confer salt stress tolerance in soybean. Acta Physiologiae Plantarum, 42(7). https://doi.org/10.1007/s11738-020-03098-w
  32. Srivastava, S., Tyagi, R., & Sharma, S. (2023). Seed biopriming as a promising approach for stress tolerance and enhancement of crop productivity: a review. Journal of the Science of Food and Agriculture, 104(3), 1244-1257. https://doi.org/10.1002/jsfa.13048
  33. Verma, P., Hiremani, N., Gawande, S., Sain, S., Nagrale, D., Narkhedkar, N., … & Prasad, Y. (2022). Modulation of plant growth and antioxidative defense system through endophyte biopriming in cotton (gossypium spp.) and non-host crops. Heliyon, 8(5), e09487. https://doi.org/10.1016/j.heliyon.2022.e09487
  34. Vitorino, L. C., Silva, F. O. d., Cruvinel, B. G., Bessa, L. A., Rosa, M., Souchie, E. L., … & Silva, F. G. (2020). Biocontrol potential of sclerotinia sclerotiorum and physiological changes in soybean in response to butia archeri palm rhizobacteria. Plants, 9(1), 64. https://doi.org/10.3390/plants9010064

Last update:

No citation recorded.

Last update:

No citation recorded.