skip to main content

Efek Interaktif Selenium dan Kromium Terhadap Pertumbuhan Vegetatif dan Generatif Tagetes erecta L.

Program Studi Biologi, Fakultas Biologi, Universitas Kristen Satya Wacana, Jl. Diponegoro No. 52 – 60, Salatiga, Jawa Tengah,50711, Indonesia

Open Access Copyright 2023 Buletin Anatomi dan Fisiologi

Citation Format:
Abstract

 

Ffek toksik kromium (Cr) pada tanaman menyebabkan terjadinya perubahan pertumbuhan. Penggunaan unsur mikronutrien selenium merupakan salah satu strategi yang efektif untuk menurunkan efek toksik logam berat termasuk Cr dan mengatur pertumbuhan serta perkembangan tanaman. Tujuan penelitian ini menganalisis efek interaktif selenium dan kromium terhadap pertumbuhan vegetatif dan generatif Tagetes erecta.  Efek interaktif selenium dan kromium dikaji secara eksperimental menggunakan rancangan acak lengkap (RAL) dengan 2 faktor yaitu konsentrasi ion kromat (CrO42-) dalam bentuk K2CrO4 dengan 3 level konsentrasi (0, 50 dan 100 mg//L), dan konsentrasi selenium dalam bentuk selenat (SeO42-) dengan 3 level konsentrasi (0 μM/L, 40 μM/L, dan 80 μM/L). Interaksi selenium dan kromium mempengaruhi secara nyata pertumbuhan vegetatif dan generatif T. erecta. Penambahan selenium 80 μM/L mampu meningkatkan tinggi tanaman, jumlah daun, panjang akar dan jumlah bunga berturut-turut 8,5%, 11,5%, 4,5%, dan 6,0% dibandingkan tanaman kontrol (tanpa Se) pada tanaman dengan perlakuan Cr 50 mg/L. Pada penambahan Se sebesar 40 dan 80 μM/L, T. erecta dengan perlakuan Cr 100 mg/L terjadi penurunan tinggi tanaman dan panjang akar sebesar 5,4-5,9% dan 2,6-3,3% dibanding tanaman kontrol. Penambahan Se 40 dan 80 μM/L pada tanaman dengan perlakuan Cr 100 mg/L meningkatkan jumlah daun dan jumlah bunga secara nyata dibanding tanaman kontrol. Penelitian yang mengkaji tentang dosis dan peran Se dalam mekanisme toleransi terhadap logam Cr masih perlu dilakukan.  

 

The toxic effects of chromium (Cr) on plants is to cause growth changes. The use of the micronutrient selenium is an effective strategy to reduce the toxic effects of heavy metals including Cr and regulate plant growth and development. The aim of this study was to analyze the interactive effects of selenium and chromium on the vegetative and generative growth of Tagetes erecta. The interactive effect of selenium and chromium was studied experimentally using a completely randomized design (CRD) with 2 factors, namely the concentration of chromate ion (CrO42-) in the form of K2CrO4 with 3 concentration levels (0, 50 and 100 mg//L), and the concentration of selenium in the form of selenat (SeO42-) with 3 concentration levels (0 μM/L, 40 μM/L, and 80 μM/L). The interaction of selenium and chromium significantly affects the vegetative and generative growth of T. erecta. The addition of 80 µM/L selenium was able to increase plant height, number of leaves, root length and number of flowers 8.5%, 11.5%, 4.5% and 6.0% compared to control plants (without Se), on plants treated with Cr 50 mg/L. The addition of Se of 40 and 80 μM/L, T. erecta with Cr 100 mg/L treatment reduced plant height and root length by 5.4-5.9% and 2.6-3.3% compared to control plants. In contrast, the addition of Se 40 and 80 μM/L to plants treated with Cr 100 mg/L significantly increased the number of leaves and the number of flowers compared to the control plants. Research that examines the dose and role of Se in the mechanism of tolerance to Cr metal still needs to be done.

Fulltext View|Download
Keywords: kromat; selenat; fase pertumbuhan; Tagetes ereta; bunga

Article Metrics:

  1. Ali, S., Rizwan, M., Bano, R., Bharwana, S.A., ur Rehman, M.Z., Hussain, M.B., & Al-Wabel, M.I. (2018). Effects of biochar on growth, photosynthesis, and chromium (Cr) uptake in Brassica rapa L. under Cr stress. Arabian Journal of Geosciences, 11, 507. http://dx.doi.org/10.1007/s12517-018-3861-3
  2. Asgher, M., Rehaman, A., Islam, S.N., Arshad, M., & Khan, N.A. (2023) Appraisal of functions and role of selenium in heavy metal stress adaptation in plants. Agriculture, 13, 1083. https://doi.org/ 10.3390/agriculture13051083
  3. Chitraprabha, K., & Sathyavathi, S. (2018). Phytoextraction of chromium from electroplating effluent by Tagetes erecta (L.). Sustainable Environment Research, 128(3), 128-134. https://doi.org/10.1016/j.serj.2018.01.002
  4. Coelho, L.C., Bastos, A.R.B., Pinho, P.J., Souza, G.A., Carvalho, J.G., Coelho, V.A.T., Oliveira, L.C.A., Domingues, R.R., & Faquin, V. (2017). Marigold (Tagetes erecta): the potential value in phytoremediasi of chromium. Pedosphere, 27(3), 559-568. https://doi.org/10.1016/S1002-0160(17)60351-5
  5. Feng, R., Wei, C., & Tu, S. (2013). The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany, 87, 58–68. https://doi.org/10.1016/j.envexpbot.2012.09.002
  6. Feng, R.W., Liao, G.J., Guo, J.K., Wang, R.G., Xu, Y.M., Ding, Y.Z., Mo, L.Y., Fan, Z.L., & Li, N.Y. (2016). Responses of root growth and antioxidative systems of paddy rice exposed to antimony and selenium. Environmental and Experimental Botany, 122, 29–38. https://doi.org/10.1016/j.envexpbot.2015.08.007
  7. Gao, M., Zhou, J., Liu, H., Zhang, W., Hu, Y., Liang, J., & Zhou, J. (2018). Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Science of The Total Environment, 631, 1100–1108. https://doi.org/10.1016/j.scitotenv.2018.03.047
  8. Guo, X., Ji, Q., Rizwan, M., Li, H., & Chen, G. (2020). Effects of biochar and foliar application of selenium on the uptake and subcellular distribution of chromium in Ipomoea aquatica in chromium-polluted soils. Ecotoxicology and Environmental Safety, 206 (1), 111184. https://doi.org/10.1016/j.ecoenv.2020.111184
  9. Handa, N., Kohli, S.K., Thukral, A.K., Bhardwaj, R., Alyemeni, M.N., Wijaya, L., & Ahmad, P. (2018). Protective role of selenium against chromium stress involving metabolites and essential elements in Brassica juncea L. seedlings. 3 Biotech, 8(1), 66. http://dx.doi.org/10.1007/s13205-018-1087-4
  10. Hasanuzzaman, M., Nahar, K., García-Caparrós, P., Parvin, K., Zulfiqar, F., Ahmed, N., & Fujita, M. (2022). Selenium supplementation and crop plant tolerance to metal/metalloid toxicity. Frontiers in Plant Science, 12, 792770. 12:792770. https://doi.org/10.3389/fpls.2021.792770
  11. Huang, H., Li, M., Rizwan, M., Dai, Z., & Tu, S. (2020). Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants. Journal of Hazardous Materials, 401, 123393. https://doi.org/10.1016/j.jhazmat.2020.123393
  12. Ismael, M.A., Elyamine, A.M., Moussa, M.G., Cai, M., Zhao, X., & Hu, C. (2019). Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 11(2), 255–277. https://doi.org/10.1039/c8mt00247a
  13. Malik, J.A., Goel, S., Kaur, N., Sharma, S., Singh, I., & Nayyar, H. (2012). Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environmental and Experimental Botany, 77, 42–48. http://dx.doi.org/10.1016/j.envexpbot.2011.12.001
  14. Pandey, C., & and Gupta, M. (2018). Selenium amelioration of arsenic toxicity in rice shows genotypic variation: A transcriptomic and biochemical analysis. Journal of Plant Physiology, 231, 168–181. https://doi.org/10.1016/j.jplph.2018.09.013
  15. Pezzarossa, B., Remorini, D., Gentile, M.L., & Massai, R. (2012). Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. Journal of the Science of Food and Agriculture, 92, 781-786. https://doi.org/10.1002/jsfa.4644
  16. Pukacka, S., Ratajczak, E., & Kalemba, E. (2011). The protective role of selenium in recalcitrant Acer saccharium L. seeds subjected to desiccation. Journal of Plant Physiology, 168 (3), 220–225. http://dx.doi.org/10.1016/j.jplph.2010.07.021
  17. Pilon-Smits, E.A.H., & Quinn, C. (2010). Selenium metabolism in plants. Plant Cell Monographs, 17, 225-241. http://dx.doi.org/10.1007/978-3-642-10613-2_10. In book Cell biology of metals and nutrients, pp. 225-241
  18. Saleem, M.H., Afzal, J., Rizwan, M., Shah, Z., Depar, N., & Usman, K. (2022). Chromium toxicity in plants: consequences on growth, chromosomal behavior and mineral nutrient status. Turkish Journal of Agriculture and Forestry, 46(3), 371-389. http://dx.doi.org/10.3906/tar-2201-61
  19. Shekari, L., Aroiee, H., Mirshekari, A., & Nemati, H. (2019). Protective role of selenium on cucumber (Cucumis sativus L.) exposed to cadmium and lead stress during reproductive stage role of selenium on heavy metals stress. Journal of Plant Nutrition, 42(5), 529–542. https://doi.org/10.1080/01904167.2018.1554075
  20. Singh, H.P., Mahajan, P., Kaur, S., Batish, D.R., & Kohli, R.K. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11, 229-254. https://doi.org/ 10.1007/s10311-013-0407-5
  21. Sun, J., Luo, Y., Ye, J.; Li, C., & Shi, J. (2022). Chromium distribution, leachability and speciation in a chrome plating site. Processes, 10, 142. https://doi.org/10.3390/pr1001014
  22. Srivastava, D., Tiwari, M., Dutta, P., Singh, P., Chawda, K., Kumari, M., & Chakrabarty, D. (2021). Chromium stress in plants: toxicity, tolerance and phytoremediation. Sustainability, 13, 4629. https://doi.org/10.3390/su13094629
  23. Tavakoli, S., Enteshari, S., & Yousefifard, M. (2020). The effect of selenium on physiologic and morphologic properties of Melissa officinalis L. Iranian Journal of Plant Physiology, 10 (2), 3125–3134. https://doi.org/ 10.30495/IJPP.2020.672572
  24. Tiwari, K., Singh, N., & Rai, U. (2013). Chromium phytotoxicity in radish (Raphanus sativus): effects on metabolism and nutrient uptake. Bulletin of Environmental Contamination and Toxicology, 91, 339-344. http://dx.doi.org/10.1007/s00128-013-1047-y
  25. Tran, T.A.T, Zhou, F., Yang, W., Wang, M., Dinh, Q.T., Wang, D., & Liang, D. (2018) Detoxification of mercury in soil by selenite and related mechanisms. Ecotoxicology and Environmental Safety, 159(15), 77–84. https://doi.org/10.1016/j.ecoenv.2018.04.029
  26. Ulhassan, Z., Gill, R.A., Huang, H., Ali, S., Mwamba, T.M., Ali, B., Huang, Q., Hamid, Y., Khan, A.R., Wang, J., & Zhou, W. (2019). Selenium mitigates the chromium toxicity in Brassicca napus L. by ameliorating nutrients uptake, amino acids metabolism and antioxidant defense system. Plant Physiology and Biochemistry, 145, 142-152. http://dx.doi.org/10.1016/j.plaphy.2019.10.035
  27. Wu, Z., Yin, X., Bañuelos, G.S., Lin, Z.Q., Liu, Y., Li, M., & Yuan, L. (2016). Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.). Frontiers in Plant Science, 7(1875)), 1–10. https://doi.org/10.3389/fpls.2016.01875
  28. Younoussa, A., Wan, Y., Yu, Y., Wang, Q., & Li, H. (2018). Effect of selenium on uptake and translocation of arsenic in rice seedlings (Oryza sativa L.). Ecotoxicology and Environmental Safety, 148, 869–875. https://doi.org/10.1016/j.ecoenv.2017.11.064
  29. Yuan, J., Hu, M., & Zhou, Z. (2013). Selenium treatment mitigates the effect of lead exposure in Coleus blumei Benth. Journal of Environmental & Analytical Toxicology, 3: 191. htpps://doi: 10.4172/2161-0525.1000191
  30. Zaheer, I.E., Ali, S., Saleem, M.H., Ashraf, M.A., Ali, Q., Abbas, Z., Rizwan, M., El-Sheikh, M.A., Alyemeni, M.N., & Wijaya, L. (2020). Zinc-lysine supplementation mitigates oxidative stress in rapeseed (Brassica napus L.) by preventing phytotoxicity of chromium, when irrigated with tannery wastewater. Plants 9(9), 1145. https://doi.org/10.3390/plants9091145

Last update:

No citation recorded.

Last update:

No citation recorded.