skip to main content

Penghambatan Perkecambahan dan Pertumbuhan Kecambah Tagetes erecta pada Media Mengandung Kromium Heksavalen

Fakultas Biologi Universitas Kristen Satya Wacana, Jl. Diponegoro No. 52-60, Salatiga, Kec. Sidorejo, Kota Salatiga, Jawa Tengah 50711., Indonesia

Open Access Copyright 2022 Buletin Anatomi dan Fisiologi

Citation Format:
Abstract

Perkecambahan biji merupakan fase kritis yang menentukan kelangsungan hidup dan toleransi tanaman pada lingkungan tercemar logam berat. Krom heksavalen (Cr6+) adalah salah satu logam berat yang bersifat toksik bagi tumbuhan. Tujuan penelitian mengetahui efek Cr6+ terhadap perkecambahan biji dan pertumbuhan kecambah Tagetes erecta. Uji perkecambahan biji dan pertumbuhan kecambah dilakukan secara eksperimental menggunakan rancangan acak lengkap dengan 4 perlakuan konsentrasi Cr6+ (K2CrO4) meliputi 0 (kontrol), 5, 25, dan 50 mg/L. Jumlah biji berkecambah diamati setiap hari selama 10 hari dan digunakan untuk menentukan persentase perkecambahan dan indeks vigor kecambah. Pertumbuhan kecambah ditentukan berdasarkan panjang radikula dan panjang epikotil, dan bobot kering kecambah pada akhir penelitian. Cr6+ mempengaruhi secara signifikan perkecambahan dan pertumbuhan kecambah T. erecta.  Konsentrasi Cr6+ sebesar 5, 25 dan 50 mg/L menurunkan secara signifikan (p<0,05) persentase perkecambahan, indeks vigor kecambah, panjang radikula, panjang epikotil, dan bobot kering kecambah. Bobot kering kecambah T. erecta pada perlakuan Cr6+ 25 mg/L meningkat signifikan dibanding kontrol dan perlakuan Cr6+ lainnya, karena meskipun pertumbuhan memanjang epikotil dan radikulanya terhambat, namun diameter epikotil dan radikulanya tumbuh lebih besar dan lebih tebal sehingga mendukung lebih besarnya bobot kering. Hasil penelitian diharapkan mendukung pengembangan potensi dan pemanfaatan T. erecta sebagai agen fitoremediasi Cr.

 

Seed germination is a critical phase that determines plant survival and tolerance in heavy metal polluted environments. Hexavalent chromium (Cr6+) is a heavy metal that is toxic to plants. The aim of this study was to determine the inhibition effect of Cr6+ on the germination and sprout growth of Tagetes erecta. The seed germination and sprout growth tests were carried out experimentally using a completely randomized design with 4 concentrations of Cr6+ (K2CrO4) treatment including 0 (control), 5, 25, and 50 mg/L. The number of seeds that germinated was observed every day for 10 days, used to determine the percentage of germination and seedling vigor index. The sprout growth was determined based on radicle length and epicotyl length, and dry weight of sprouts at the end of the study. Cr6+ significantly affected the germination and sprouts growth of T. erecta. The Cr6+ concentrations of 5, 25 and 50 mg Cr6+/L significantly reduced (p<0.05) germination percentage, seedling vigor index, radicle length, epicotyl length, and wet weight of sprouts. The dry weight of T. erecta sprouts in the Cr6+ 25 mg/L treatment increased significantly compared to the control and other Cr6+ treatments, because although the elongation of the epicotyl and radicle was inhibited, the diameter of the epicotyl and radicle grew larger and thicker thus supporting a greater dry weight. These results are expected to support the potential development and utilization of T. erecta as a phytoremediation agent for Cr.

 

Fulltext View|Download
Keywords: perkecambahan, kromium heksavalen, Tagetes erecta, logam berat, toksisitas

Article Metrics:

  1. Amin, H., Arain, B.A., Amin, F., & Surhio, M.A. (2013). Phytotoxicity of chromium on germination, growth and biochemical attributes of Hibiscus esculentus L. American Journal of Plant Sciences, 4, 2431-2439. http://dx.doi.org/10.4236/ajps.2013.412302
  2. Bautista, O.V., Fischer, G., & Cardenas, J.F. (2013). Cadmium and chromium effects on seed germination and root elongation in lettuce, spinach and Swiss chard. Agronomía Colombiana, 31(1), 48-57. http://www.revistas.unal.edu.co/index
  3. Bhalerao, S.A., & Sharma, A.S. (2015). Chromium: as an environmental pollutant. International Journal of Current Microbiology and Applied Sciences, 4(4), 732-746. https://www.ijcmas.com/vol-4-4/SatishA.Bhalerao andAmitS.Sharma.pdf
  4. Bezini, E., Abdelguerfi, A., Nedjimi, B., Touati, M., Adli, B., & Yabrir, B. (2019). Effect of some heavy metals on seed germination of Medicago arborea L. (Fabaceae). Agriculturae Conspectus Scientificus, 84(4), 357-364. https://hrcak.srce.hr/file/332899
  5. Chitraprabha, K., & Sathyavathi, S. (2018). Phytoextraction of chromium from electroplating effluent by Tagetes erecta (L.). Sustainable Environment Research, 128(3), 128-134. https://doi.org/10.1016/j.serj.2018.01.002
  6. Coelho, L.C., Bastos, A.R.B., Pinho, P.J., Souza, G.A., Carvalho, J.G., Coelho, V.A.T., Oliveira, L.C.A., Domingues, R.R., & Faquin, V. (2017). Marigold (Tagetes erecta): the potential value in phytoremediasi of chromium. Pedosphere, 27(3), 559-568. https://doi.org/10.1016/S1002-0160(17)60351-5
  7. Coetzee, J.J., Bansal, N., & Chirwa, E.M.N. (2020). Chromium in environment, its toxic effect from chromite mining and ferrochrome industries, and its possible bioremediation. Exposure and Health, 12(1), 51-56. https://link.springer.com/article/10.1007/s12403-018-0284-z
  8. Hemalatha, G., Sujitha, S., & Pavithra, G.S. (2014). Studies on reduction and removal of hexavalent chromium in industrial waste water by Alternanthera sessilis and Tagetes erecta. BioTechnology an Indian Journal, 9(4), 147-152. https://www.tsijournals.com/articles/studies-on-reduction-and-removal-of-hexavalent-chromium-in-industrial-waste-water-by-alternanthera-sessilis-and-tagetes-.pdf
  9. Kasmiyati, S., Santosa, Priyambada, I.D., Dewi, K., & Sandradewi, R. (2015). Perkecambahan biji dan pertumbuhan kecambah varietas sorgum (Sorghum bicolor L.) pada cekaman krom heksavalen. Bioma: Berkala Ilmiah Biologi, 7 (1), 41-54. https://doi.org/10.14710/bioma.17.1.41-54
  10. Kadukova J., Ovelgosova O., Mrazíkova A., Marcincakova R., & Tkacova E. (2015). Assessment of biologically synthesized Ag nanoparticles toxicity against E. coli, Staphylococcus aureus, Parachlorella kessleri and Sinapis alba. Nova Biotechnologica et Chimica, 14, 69-77. https://doi.org/0.1515/nbec-2015-0016
  11. Lopez-Bucio, J., Ortiz-Castro, R., Ruiz-Herrera, L.F., Juarez, C.V., Hernandez-Madrigal, F., Carreon-Abud, Y., & Martinez-Trujillo, M. (2015). Chromate induces adventitious root formation via auxin signalling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis thaliana. Biometals, 28, 353–365. https://doi.org/10.1007/s10534-015-9838-8
  12. Liu, J., Xin, X., & Zhou, Q. (2018). Phytoremediation of contaminated soils using ornamental plants. Environmental Review, 26: 43–54. dx.doi.org/10.1139/er-2017-0022
  13. Maryani, Amalia, N.N., & Agustina, T. (2020). Batik liquid waste inhibited germination and degraded root tissues of Tagetes erecta L. and Zinnia violacea Cav. AIP Conference Proceedings, 2260(1), 1-7. https://doi.org/10.1063/5.0015766
  14. Madanan, M.T., Shah, I.K., Varghese, G.K., & Kaushal, R.K. (2021). Application of aztec marigold (Tagetes erecta L.) for phytoremediation of heavy metal polluted lateritic soil. Environmental Chemistry and Ecotoxicology, 3, 17-22. http://dx.doi.org/10.1016/j.enceco.2020.10.007
  15. Oliveira, H. (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. Journal of Botany, 2012, 1-7. http://doi.org/10.1155/2012/375843
  16. Panuccio, M.R., Jacobsen, S.E., Akhtar S.S., & Muscolo, A. (2014). Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants, 6, 1-18. https://doi.org/10.1093/aobpla/plu047
  17. Parihar, A., & Malaviya, P. (2015). Effect of textile effluent on the growth and pigment content of Tagetes erecta L. (var. Pusa Basanti). Indian Journal of Applied Research, 5(5), 1-3. https://doi.org/10.36106/ijar
  18. Ranal, M.A., Mendes-Rodrigues, C., Teixeira, W.F., Oliveira, A.P., & Romero, R. (2016). Seed germination of Microlicia fasciculata, an apomictic and aluminium accumulator species: Unexpected intraspecific variability in a restricted Neotropical savanna area. Flora, 220, 8-16. http://dx.doi.org/10.1016/j.flora.2016.02.001
  19. Riaz, M., Yasmeen, T., Arif, M.S., Ashraf, M.A., Hussain, Q., Shahzad, S.M., Rizwan, M., Mehmood, M.W., Zia, A., Mian, I.A., & Fahad, S. (2019). Variations in morphological and physiological traits of wheat regulated by chromium species in long-term tannery effluent irrigated soils. Chemosphere, 222, 891–903. https://doi.org/10.1016/j.chemosphere.2019.01.170
  20. Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N.K., Dumat, C., & Rashid, M.I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178, 513–533. https://doi.org/10.1016/j.chemosphere.2017.03.074
  21. Shadreck, M. & Mugadza, T. (2013). Chromium, an essential nutrient and pollutant: a review. African Journal of Pure and Applied Chemistry, 7(9), 310-317. https//doi.org/10.5897/AJPAC2013. 0517
  22. Swapna B., & Rama Gopal G. (2014). Interactive effects between water stress and heavy metals on seed germination and seedling growth of two green gram (Vigna radiata L. Wilzec) Cultivars. Biolife, 2(1), 291-296. http://biolifejournals.com/pdffiles/cimg090104_266%20SWAPNA%20291-296.pdf
  23. Singh, H.P., Mahajan, P., Kaur, S., Batish, D.R., & Kohli, R.K. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11, 229-254. https://doi.org/ 10.1007/s10311-013-0407-5
  24. Singh, D., Sharma, N.L., Singh, C.K., Sarkar, S.K., Singh, I., & Dotaniya, M.L. (2020). Effect of chromium (VI) toxicity on morphophysiological characteristics, yield, and yield components of two chickpea (Cicer arietinum L.) varieties. PLoS ONE, 15(12), e0243032. https://doi.org/10.1371/journal.pone.0243032
  25. Solanki R. & Dhankhar R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia, 66, 195-204. https://doi.org/10.2478/s11756-011-0005-6
  26. Sun, J., Luo, Y., Ye, J.; Li, C., & Shi, J. (2022). Chromium distribution, leachability and speciation in a chrome plating site. Processes, 10, 142. https://doi.org/10.3390/pr1001014
  27. Srivastava, D., Tiwari, M., Dutta, P., Singh, P., Chawda, K., Kumari, M., & Chakrabarty, D. (2021). Chromium stress in plants: toxicity, tolerance and phytoremediation. Sustainability, 13, 4629. https://doi.org/10.3390/su13094629
  28. Talukdar, D. (2011). Effect of arsenic-induced toxicity on morphological traits of Trigonella foenum-graecum L. and Lathyrus sativus L. during germination and early seedling growth. Current Research Journal of Biological Sciences, 3(2), 116-123. https://maxwellsci.com/print/crjbs/v3-116-123.pdf
  29. Wakeel, A., Ali, I., Upreti, S., Azizullah, A., Liu, B., Khan, A.R., Huang, L., Wu, M., & Gan, Y. (2018). Ethylene mediates dichromate-induced inhibition of primary root growth by altering AUX1 expression and auxin accumulation in Arabidopsis thaliana. Plant, Cell & Environment, 41, 1453–1467. https://doi.org/10.1111/pce.13174
  30. Wakeel, A., & Xu, M. (2020). Chromium morpho-phytotoxicity. Plants, 9, 564. https://doi.org/10.3390/plants9050564

Last update:

No citation recorded.

Last update:

No citation recorded.