skip to main content

Kandungan Pigmen Fotosintetik dan Total Fenol Daun Mangrove Api-Api [Avicennia marina (Forsk.) Vierh] pada Tambak dan Pantai Mangunharjo Semarang

Program Studi Biologi, Fakultas Sains dan Matematika, Universitas Diponegoro, Jl. Prof. Soedarto, SH, Tembalang, Semarang 50275, Indonesia, Indonesia

Open Access Copyright 2021 Buletin Anatomi dan Fisiologi (Bulletin of Anatomy and Physiology)

Citation Format:
Abstract

Avicennia marina merupakan mangrove mayor yang mampu bertahan hidup di kondisi ekstrim seperti intensitas cahaya, suhu dan kadar garam tinggi. Kondisi ekstrim berpengaruh terhadap sintesis dan reduksi pigmen fotosintetik. Cekaman intensitas cahaya dan salinitas memicu A. marina membentuk fenol sebagai senyawa pertahanan pada kondisi kurang menguntungkan. A. marina pada kawasan Mangunharjo tumbuh baik pada lingkungan pantai dan tambak. Tujuan penelitian ini untuk mengetahui pengaruh lingkungan pantai dan tambak terhadap kandungan pigmen fotosintetik dan total fenol daun A. marina. Penelitian dilakukan dengan metode observasi dengan melibatkan lokasi pantai dan tambak. Penelitian menggunakan Rancangan Acak Lengkap (RAL) satu faktor organ daun A. marina yang hidup di lingkungan pantai dan tambak. Daerah pengamatan dibagi menjadi 6 titik pengambilan sampel. Parameter penelitian yang diamati adalah intensitas cahaya, suhu, salinitas, pigmen fotosintetik (klorofil a, klorofil b, karotenoid) dan total fenol daun A. marina. Analisis data menggunakan Uji T dengan taraf kepercayaan 95%. Hasil penelitian menunjukkan bahwa daun A. marina di pantai memiliki kandungan pigmen fotosintetik dan total fenol lebih rendah dibanding tambak.  Hal ini menunjukkan bahwa lingkungan pantai dan tambak berpengaruh nyata terhadap kandungan pigmen fotosintetik dan fenol. Intensitas cahaya dan salinitas tinggi di pantai mengganggu pembentukan klorofil dan Phenylalanine Ammonia Lyase(PAL).

 

Avicennia marina is a major mangrove that is able to survive in extreme conditions such as light intensity, temperature and high salt content. Extreme conditions affect the synthesis and reduction of photosynthetic pigments. The stress of light intensity and salinity triggered A. marina to form phenol as a defense compound under unfavorable conditions. A. marina in the Mangunharjo area grows well in coastal and pond environments. The purpose of this study was to determine the effect of the coastal and pond environment on the content of photosynthetic pigments and total phenol in the leaves of A. marina. The study was conducted using the observation method involving the location of the beach and ponds. The study used a Completely Randomized Design (CRD) with one factor of A. marina leaf organ that lives in the coastal and pond environment. The observation area are divided into 6 sampling points. Parameters observed were light intensity, temperature, salinity, photosynthetic pigments (chlorophyll a, chlorophyll b, carotenoids) and total phenol of A. marina leaves. Data analysis used T test with 95% confidence level. The results showed that the leaves of A. marina on the beach had lower photosynthetic pigments and total phenol content than those in ponds. This shows that the coastal environment and ponds have a significant effect on the content of photosynthetic pigments and phenols. Light intensity and high salinity on the beach interfere with the formation of chlorophyll and Phenylalanine Ammonia Lyase (PAL).

Fulltext View|Download
Keywords: Avicennia marina; intensitas cahaya; salinitas; pigmen fotosintetik; fenol
Funding: Universitas Diponegoro under contract 329-47/UN7.6.1/PP/2020.

Article Metrics:

  1. Bistgani, Z. E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F., & Morshedloo, M. R. 2019. Effect of salinity stress on the physiological characteristics, phenolic. Industrial Crops & Products, 135: 311–320
  2. Bressan, M., Dall’Osto, L., Bargigia, I., J. P. Alcocer, M., Viola, D., Cerullo, G., et al. 2016. LHCII Can Substitute for LHCI as an Antenna for Photosystem I but with Reduced Light-Harvesting Capacity. Nature Plants, 1-10
  3. Darmanti, S., Santosa, L., Nugroho, H., & K, D. 2018. Reactive Oxygen Species Accumulations, Phenylalanine Ammonialyase Activity and Phenolic Acid Composition of Soybean [Glycine max (L.) Merr.] Cv. Grobogan that Exposed to Multiple Stress of Purple Nutsedge (Cyperus rotundus L.) Interference and Drought. The Journal of Animal & Plant Sciences, 28(1)" 244-251
  4. Drop, B., Webber-Birungi, M., K.N. Yadav, S., Filipowicz-Szymanska, A., Fusetti, F., J. Boekema, E., et al. 2014. Light-harvesting complex II (LHCII) and its supramolecular organization. Biochimica et Biophysica Acta, 1837: 63–72
  5. Ghasemzadeh, A., Jaafar, H. E., Rahmat, A., Wahab, P. M., & Halim, M. A. 2010. Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). Int. J Mol Sci, 11:3885–3897
  6. Gururani, M. A., Venkatesh, J., & Tran, L. P. 2015. Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol. Plant, 8: 1304–1320
  7. Hendry, G. F., & Grime, J. P. 1993. Methods in Comparative Plant Ecology. London Chapman and Hall: A Laboratory Manual
  8. Ibrahim, M. H., & Jaafar, H. Z. 2012. Primary, Secondary Metabolites, H202, Malondialdehyde and Photosynthetic Response of Orthosiphon stimaneus Benth to Different Irradiance Levels. Molecules, 17: 1159-1176
  9. Ilmiah, H. H., Nuringtyas, T. R., & Nugroho, L. H. 2018. Accumulation of Potential Photo-Protective Compound Groups in Mangrove (Sonneratia caseolaris (L.) Engler.) Leaves. Pharmacogn J, 10(3):576-580
  10. Khan, T. A., Mazid, M., & Mohammad, F. 2011. Status of secondary plant products under abiotic stress: an overview. J Stress Physiol Biochem, 7:75–98
  11. Krishnamoorthy, M., Sasikumar, J. M., Shamna, R., Pandiarajan, C., Sofia, P., & Nagarajan, B. 2011. Antioxidant activities of bark extract from mangroves Bruguiera cylindrica (L.) Blume and Ceriops decandra Perr. Indian J Pharmacol, 43(5): 557–562
  12. Lahabu, Y., Joshian N, W. S., & Agung, B. W. 2015. Kondisi Ekologi Mangrove di Pulau Mantehage Kecamatan Wori Kabupaten Minahasa Utara Provinsi Sulawesi Utara. Jurnal Pesisir dan Laut Tropis, 2(1): 41-52
  13. Lai, Y. H., & Lim, Y. Y. 2011. Evaluation of Antioxcidant Activities of the Methanolic Extract of Selected Ferns in Malaysia. IPCBEE 20
  14. Lichtenthaler, H. K., & C, B. 2001. Chlorophyll and Carotenoids: Measurement and Characterization by UV-Vis Spectroscopy. Current Protocols in Food Analytical Chemistry, F4.3.1 –F4.3.8
  15. Linatoc, A. C., Idris, A., & Bakar, M. F. 2018. Influence of Light Intensity on the Photosynthesis and Phenolic Contents of Mangifera Indica. Journal of Science and Technology, 10 (4): 47-54
  16. Lisar, S. S., Motafakkerazad, R., Hossain, M. M., & Rahman, I. M. 2012. Water Stress in Plants: Causes, Effects and Responses. Water Stress, InTech, Croatia, 1-14
  17. Mairisdawenti, Dwi, P. D., & Ilahi, A. F. 2014. Analisis Pengaruh Intensitas Radiasi Matahari, Temperatur dan Kelembaban Udara terhadap Fluktuasi Konsentrasi Ozon Permukaan di Bukit Kototabang Tahun 2005-2010. Jurnal Fisika Unand, 3(3):177-183
  18. Mastuti, R. 2016. Metabolit Sekunder dan Pertahanan Tumbuhan. Malang: FMIPA Universitas Brawijaya
  19. Nugraha, S. B., Sidiq, W. B., & Setyowati, D. L. 2018. Analysis of extent and spatial pattern change of mangrove ecosystem in Mangunharjo Sub-District from 2007 To 2017. In Journal of Physics: Conference Series, 983(1)
  20. Rezazadeh, A., Ghasemnezhad, A., Mojtaba, B. M., & Telmadarrehei, T. 2012. Effect of salinity on phenolic composition and antioxiantioxidant activity of artichoke (Cynara scolymus L.) Leave. Res. J Med Plant, 6:245–252
  21. Shimoda, Y., Ito, H., & Tanaka, A. 2012. Conversion of chlorophyll b to chlorophyll a precedes magnesium dechelation for protection against necrosis in Arabidopsis. Plant J, 72(3):501–511
  22. Supriatna, D., Mulyani, Y., Rostini, I., & Agung, M. K. 2019. Aktivitas Antioksidan, Kadar Total Flavonoid dan Fenol Ekstrak Metanol Kulit Batang Mangrove Berdasarkan Stadia Pertumbuhannya. Jurnal Perikanan dan Kelautan, 10(2): 35-42
  23. Yamane, K., Mitsuya, S., Taniguchi, M., & Miyake, H. 2012. Salt-induced chloroplast protrusion is the process of exclusion of ribulose-1,5-bisphosphate carboxylase/ oxygenase from chloroplasts into cytoplasm in leaves of rice. Plant Cell Environ, 35: 1663–1671
  24. Yustiningsih, M. 2019. Intensitas Cahaya dan Efisiensi Fotosintesis pada Tanaman Naungan dan Tanaman Terpapar Cahaya Langsung. BIOEDU, 4(2): 43-48
  25. Zhang, X., & Liu, C. J. 2014. Multifaceted Regulations of Gateway Enzyme PhenylalanineAmmonia-Lyase in the Biosynthesis of Phenylpropanoids. Molecular Plant, pp. 17-28

Last update:

No citation recorded.

Last update:

No citation recorded.