skip to main content

Resilient Urban Design Approach for Coastal Settlement (Case Study: Kampung Bahari Tambak Lorok, Semarang)

*Khansa Saffana  -  Institut Teknologi Bandung, Indonesia
Febri Guinensa Putra  -  Institut Teknologi Bandung, Indonesia
Ananda Amelia Pandani  -  Institut Teknologi Bandung, Indonesia
Heru Wibowo Poerbo  -  Institut Teknologi Bandung, Indonesia

Citation Format:
Abstract

Kampung Bahari Tambak Lorok is a coastal settlement in Semarang that has a vulnerability to disaster. The main problem of the vulnerability is the tidal and annual flooding every rainy season. The flooding is caused by the location of Kampung Bahari, the land subsidence issue, and the effect of climate change that causes extreme weather and sea-level rise (SLR). Kampung Bahari is located in North Semarang and is formed by the young alluvial deposits that trigger subsidence, while the subsidence itself is not only caused by geology reason but also geotechnical reasons, such as excessive water consumption, consolidation, and excessive land loads. This paper aims to examine the design approach that is most probable to be implied due to the vulnerability of Kampung Bahari towards the tidal and annual flood caused by the reasons mentioned above. The research will be carried out by data collection about Kampung Bahari, finding the actual settlement condition, and describing the problems deeper. The result will focus on the physical intervention consisting of implementing water-sensitive design principles, especially in the spatial planning of the settlements, urban system efficiency, building prototype guidelines, and infrastructure.

Fulltext View|Download
Keywords: Coastal Settlement, Flood, Land Subsidence, Resilient Urban Design, Waterfront

Article Metrics:

  1. Abidin, H. e. (2013). Land subsidence in Jakarta and Semarang Bay – The relationship between physical processes, risk perception, and household adaptation. Ocean & Coastal Management, 211, 226-240. doi: https://doi.org/10.1016/j.ocecoaman.2021.105775
  2. Alisjahbana, A. S. (2018). Tujuan Pembangunan Berkelanjutan di Indonesia (ed 2 n.d ed., Vol. III). Bandung: Unpad Press
  3. Anita, J. (2020). Perencanaan Kampung Bahari Sebagai Upaya Keberlanjutan, Perkampungan Nelayan Tambak Lorok, Semarang. Jurnal Arsitektur Terracotta, 1 (3), 171-179
  4. Barends F. B., B. F. (1995). Land subsidence : natural causes, measuring techniques, the Groningen gasfields : proceedings of the Fifth International Symposium on Land Subsidence (The Hague, Netherlands, 16-20 October, 1995)
  5. Bird, E. C. (1987). The modern prevalence of beach erosion. Marine Pollution Bulletin, 18(4), 151-157. doi: https://doi.org/10.1016/0025-326X(87)90238-4
  6. Bird, E. C. (1996). Coastal erosion and rising sea level, in Sea Level Rise and Coastal Subsidence. 87-103
  7. Cogley, J. C. (2009). Geodetic and direct mass balance measurements: Comparison and joint analysis. Ann. Glaciol, 50, 96-100. doi: 10.2189/172756409787769744
  8. Galloway, D. L. (1999). Land Subsidence in the United States. USGS science for a changing world, 1882
  9. Himpunan Mahasiswa Rekayasa Kehutanan (HMH) ‘Selva’. (2019, June 21). Banjir: Bentuk Gangguan Terhadap Hubungan Siklus Hidrologi dan Vegetasi. Retrieved from https://selva.sith.itb.ac.id/2019/06/21/banjir-bentuk-gangguan-terhadap-hubungan-siklus-hidrologi-dan-vegetasi/
  10. Jevrejeva, S. A. (2006). Nonlinear trends and multiyear cycles in sea level records. Journal of Geophysical Research Atmospheres, 111 (C09012). doi: http://dx.doi.org/10.1029/2005JC003229
  11. Jha, A. K. (2011). Cities and Flooding. A Guide to Integrated Urban Flood Risk Management for the 21st Century. Washington DC: The World Bank
  12. Levermann, A. P. (2013). The multimillennial sea-level commitment of global warming. Proc Natl Acad Sci U S A, 110 (34), 13745–13750. doi: https://doi.org/10.1073/pnas.1219414110
  13. Levitus, S. J. (2005). Warming of the world ocean, 1955––2003. Geophysical Research Letters, 32. doi: 10.1029/2004GL021592,2005
  14. Lombard, A. A. (2005). Contribution of thermal expansion to present-day sea-level change revisited. Global and Planetary Change, 47(1), 1-16. doi: https://doi.org/10.1016/j.gloplacha.2004.11.016
  15. McGranahan, G. D. (2007). The rising tide: assessing the. Environ Urban, 19 (1), 17-37. doi: 10.1177/0956247807076960
  16. Menteri Kelautan dan Perikanan Republik Indonesia. (2018). Peraturan Menteri Kelautan dan Perikanan Republik Indonesia Nomor 21/Permen-KP/2018 tentang Tata Cara Perhitungan Batas Sempadan Pantai. Retrieved from https://jdih.kkp.go.id/peraturan/21%20PERMEN-KP%202018.pdf
  17. Modoni G, D. G. (2013). Spatial analysis of land subsidence induced by groundwater withdrawal. Engineering Geology, 167, 59-71. doi: https://doi.org/10.1016/j.enggeo.2013.10.014
  18. Morice, C. P. (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. Journal of Gheophysical Research Atmospheres. doi: https://doi.org/10.1029/2011JD017187
  19. Nuhfer, E. B. (1993). The Citizen's Guide to Geologic Hazards: The American Institute of Professional Geologists. Arvada, Colorado
  20. Patton, W. a. (1999). Career Development and Systems Theory: A New Relationship. ERIC
  21. Peraturan Pemerintah. (2008). Peraturan Pemerintah Republik Indonesia Nomor 21 Tahun 2008 Pasal 1 Ayat 6. Retrieved from https://bnpb.go.id/ppid/file/PP_No._21_Th_2008.pdf
  22. Poland, J. (1984). Guidebook to studies of land subsidence due to ground-water withdrawal, in: 1259 Poland, J.F. (Ed.), Guidebook to Studies of Land Subsidence Due to Ground-Water 1260 Withdrawal. Chelesea, Michigan: UNESCO
  23. S. Solomon, D. Q. (2007). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC 4th Assessment Report. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press
  24. Sato, H. P., Abe, K., & Ootaki, O. (2003). GPS-measured land subsidence in Ojiya City, Niigata Prefecture, Japan. Engineering Geology, 67(3-4), 379-390
  25. Setioko, B. (2013). Transformasi Ruang Perkotaan di Permukiman Nelayan (Studi Kasus: Tambakmulyo, Semarang). TATALOKA, 15 (3), 192-207
  26. Shepherd, A. e. (2012). A Reconciled Estimate of Ice-Sheet Mass Balance. Science, 338(6111), 1183-1189. doi: https://doi.org/10.1126/science.1228102
  27. Shi, X. e. (2008). Regional land subsidence simulation in Su-xi-Chang area and Shanghai City, China. Engineering Geology, 100 (1-2), 27-42
  28. T.F. Stocker, D. G. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC 5th Assessment Report. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press
  29. Tomás, R. (2009). Estudio de la subsidencia de la ciudad de Murcia mediante Interferometría SAR diferencial (DInSAR) avanzada. [PhD Thesis]. Advisor: Juan Manuel Lopez-Sanchez
  30. UNFCC Secretariat. (2017). Opportunities and options for integrating climate change adaptation with the Sustainable Development Goals and the Sendai Framework for Disaster Risk Reduction 2015 – 2030. Technical Paper, 27. Retrieved from te-a.org
  31. Vellinga, P. a. (1989). Sea level rise, Consequences and polices. Clim. Change, 15 (1-2), 175-189. doi: 10.1007/bf00138851
  32. Watson, R. e. (2011). esign for Flooding: Architecture, Landscape, and Urban Design for Resilience to Climate Change. New Jersey: Inc. Hoboken
  33. Zhu, L. e. (2015). Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Engineering Geology, 193, 243-255. doi: https://doi.org/10.1016/j.enggeo.2015.04.020

Last update:

No citation recorded.

Last update:

No citation recorded.