Kajian Emisi Kendaraan di Persimpangan Surabaya Tengah dan Timur serta Potensi Pengaruh terhadap Kesehatan Lingkungan Setempat

*Handy Gunawan  -  Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan Universitas Kristen Petra, Surabaya, Indonesia
Gogot Setyo Budi  -  Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan Universitas Kristen Petra, Surabaya, Indonesia
Received: 4 Mar 2017; Published: 29 Aug 2017.
Open Access Copyright (c) 2017 Jurnal Wilayah dan Lingkungan

Citation Format:

The growing number of motor vehicles on the street will increase the consumption of gasoline. At the national scale, gasoline consumption increased from 62.035.065 kiloliters in 2013 to 70.744.977 kiloliters in 2014. The increasing consumption of gasoline not only drains the  non-renewable fossil energy but also affects the environment due to gas emission generated by fuel burning. The carbon monoxide (CO) or carbon dioxide (CO2), hydrocarbon (HC), nitrogen oxide (Nox), particulate matter (PM), and sulfide (SO2) concentration in a congestion area such as the area around traffic lights is substantially high. This research aims to find the gasoline consumption and emission rate in intersections with traffic lights, and its effect on surrounding environment. The research was done by collecting traffic volume in two locations in Surabaya, at morning rush hours, which started from 6.20 A.M. to 8.20 A.M, then calculated the emission rate and gasoline consumption from traffic data. The data showed that the volume of gasoline consumed in one lane (out of four lanes) at the traffic lights for two-hour duration was 700 liters, and the total substance of PM, NO, SO2 produced were 353 grams, 15.166 grams, and 410 grams. The concentration of NO and SO2 at Dr. Soetomo intersection after one-hour emission was 3059 μg/m3 and 57 μg/m3, while that at Kertajaya intersection was 672 μg/m3 and 12 μg/m3, respectively. These pollutants were away above the tolerable limit to human health as suggested by WHO, which should not exceed 50 μg/m3 for PM, 40 μg/m3 for NO3 for NO, and 20 μg/m3 for SO2.


Keywords: gasoline consumption; gas emission; motorized vehicle
Funding: Gogot Setyo Budi, Handy Gunawan

Article Metrics:

  1. Aubé, F. (2001). Guide for Computing CO2 Emissions Related to Energy Use, 4(1), 2–4. Retrieved from www.marcobresci.it/docs/guida_co2.pdf
  2. Badan Pusat Statistik Indonesia. (2014). Statistik Transportasi Darat. Jakarta
  3. Boman, B. C., Forsberg, A. B., Järvholm, B. G., Scandinavian, S., & August, N. (2003). Adverse health effects from ambient air pollution in relation to residential wood combustion in modern society. Scandinavian Journal of Work, Environment & Health, 29(4), 251–260. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12934718
  4. Bourdrel, T., Bind, M.-A., Béjot, Y., Morel, O., & Argacha, J.-F. (n.d.). Cardiovascular effects of air pollution. Archives of Cardiovascular Diseases. doi: 10.1016/j.acvd.2017.05.003
  5. Dispenda Kota Surabaya. (2010). Jumlah Kendaraan Bermotor di Surabaya. Surabaya
  6. Dragomir, C. M., Constantin, D.-E., Voiculescu, M., Georgescu, L. P., Merlaud, A., & Van Roozendael, M. (2015). Modeling results of atmospheric dispersion of NO2 in an urban area using METI-LIS and comparison with coincident mobile DOAS measurements. Atmospheric Pollution Research, 6(3), 503–510. doi: 10.5094/APR.2015.056
  7. González-Díaz, S. N., Arias-Cruz, A., Macouzet-Sánchez, C., & Partida-Ortega, A. B. (2016). Impact of air pollution in respiratory allergic diseases. Medicina Universitaria, 18(73), 212–215. doi: 10.1016/j.rmu.2016.10.006
  8. Google Maps. (2016). Jalan Kertajaya dan Jalan Dr. Soetomo. Retrieved April 19, 2016, from https://maps.google.com/
  9. Hadis, C. S., & Sumarsono, A. (2013). Hubungan Tundaan dan Panjang Antrian terhadap konsumsi bahan bakar akibat penutupan pintu perlintasan kereta api (Studi kasus pada perlintasan kereta api di Surakarta). Matriks Teknik Sipil, 1(2), 38–45. Retrieved from http://matriks.sipil.ft.uns.ac.id/index.php/MaTekSi/article/view/47
  10. Heidenreich, P. A., Trogdon, J. G., Khavjou, O. A., Butler, J., Dracup, K., Ezekowitz, M. D., … Woo, Y. J. (2011). Forecasting the future of cardiovascular disease in the United States: A policy statement from the American Heart Association. Circulation, 123(8), 933–944. doi: 10.1161/CIR.0b013e31820a55f5
  11. Higashino, H., Mita, K., Yoshikado, H., Iwata, M., & Nakanishi, J. (2007). Exposure and risk assessment of 1,3-butadiene in Japan. Chemico-Biological Interactions, 166(1–3), 52–62. doi: 10.1016/j.cbi.2006.10.002
  12. Ismayanti, R. I., Boedisantoso, R., & Assomadi, A. F. (2010). Kajian emisi Co2 menggunakan persamaan mobile 6 dan mobile combustion dari sektor transportasi di Kota Surabaya. Retrieved from digilib.its.ac.id/public/ITS-Undergraduate-16090-3307100053-Paper.pdf
  13. Isnaeni, M., & Lubis, H. A.-R. (2003). Efek Lingkungan Interaksi Transportasi Dan Tata Ruang Kota. Institut Teknologi Bandung
  14. Kim, I.-S., Sohn, J., Lee, S.-J., Park, J.-K., Uhm, J.-S., Pak, H.-N., … Joung, B. (2017). Association of air pollution with increased incidence of ventricular tachyarrhythmias recorded by implantable cardioverter defibrillators: Vulnerable patients to air pollution. International Journal of Cardiology, 240, 214–220. doi: 10.1016/j.ijcard.2017.03.122
  15. Lee, B.-J., Kim, B., & Lee, K. (2014). Air pollution exposure and cardiovascular disease. Toxicological Research, 30(2), 71–5. doi: 10.5487/TR.2014.30.2.071
  16. Liu, Y., Xie, S., Yu, Q., Huo, X., Ming, X., Wang, J., … Shi, T. (2017). Short-term effects of ambient air pollution on pediatric outpatient visits for respiratory diseases in Yichang city, China. Environmental Pollution, 227, 116–124. doi: 10.1016/j.envpol.2017.04.029
  17. Md Habib Al Razi, K., & Hiroshi, M. (2012). Modeling of atmospheric dispersion of mercury from coal–fired power plants in Japan. Atmospheric Pollution Research, 3(2), 226–237. doi: 10.5094/APR.2012.025
  18. National Oceanic and Atmospheric Administration. (2016). Surface Data Hourly Global DS3505. Retrieved August 21, 2016, from https://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd
  19. PT. Binakarya dan SWEROAD. (1997). Manual Kapasitas Jalan Indonesia (MKJI). Jakarta
  20. Schultz, A. A., Schauer, J. J., & Malecki, K. M. C. (2017). Allergic disease associations with regional and localized estimates of air pollution. Environmental Research, 155, 77–85. doi: 10.1016/j.envres.2017.01.039
  21. Suhadi, D. R., & Febrina, A. S. (2013). Pedoman Teknis Penyusunan Inventarisasi Emisi Pencemar Udara Di Perkotaan. Jakarta
  22. World Health Organization. (2005). International Health Regulations. World Health Organization. Retrieved from http://www.who.int/ihr/publications/9789241596664/en/
  23. World Health Organization. (2016). World Health Statistics - Monitoring Health for the SDGs. World Health Organization. Retrieved from http://www.who.int/gho/publications/world_health_statistics/2016/en/

Last update: 2021-05-15 04:03:34

  1. Emisi Karbon dan Produk Domestik Bruto: Investigasi Hipotesis Environmental Kuznets Curve (EKC) pada Negara Berpendapatan Menengah di Kawasan ASEAN

    Muhamad Ameer Noor, Putu Mahardika Adi Saputra. Jurnal Wilayah dan Lingkungan, 8 (3), 2020. doi: 10.14710/jwl.8.3.230-246
  2. Analysis of Air Pollution due to Vehicle Exhaust Emissions on The Road Networks of Beringin Janggut Area

    Achmad Rizki Pratama, Joni Arliansyah, Melawaty Agustien. Journal of Physics: Conference Series, 127 (8), 2019. doi: 10.1088/1742-6596/1198/8/082030

Last update: 2021-05-15 04:03:34

  1. Analysis of Air Pollution due to Vehicle Exhaust Emissions on The Road Networks of Beringin Janggut Area

    Achmad Rizki Pratama, Joni Arliansyah, Melawaty Agustien. Journal of Physics: Conference Series, 127 (8), 2019. doi: 10.1088/1742-6596/1198/8/082030