skip to main content

Penilaian Zona Kerentanan Air Tanah Terhadap Pencemaran dengan Metode SINTACS di Ranai (Pulau Bunguran)

*Erik Febriarta orcid  -  Magister Pengelolaan Pesisir dan Daerah Aliran Sungai, Fakultas Geografi, Universitas Gadjah Mada, Indonesia
Dian Indah Shofarini  -  Jurusan Perencanaan Wilayah dan Kota, Universitas Brawijaya, Indonesia
Open Access Copyright (c) 2021 Jurnal Wilayah dan Lingkungan
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citation Format:
Abstract

Bunguran Besar Island in the Natuna Islands, Riau Islands Province, is dominated by a lowland topography with a sloping to steep morphological condition. In general, the plains on the island of Bunguran Besar have a plains topography with altitudes ranging from 5- 30 meters above sea level, and the highest altitude is on Mount Ranai, 920 meters above sea level. This condition causes environmental problems, especially on the plains that form basins with geodes that affect the condition of easily polluted groundwater resources influenced by the presence of shallow and close to the surface groundwater (aquifer). The condition of the aquifer, which is shallow and relatively close to the surface, has the potential for groundwater contamination by polluting sources. This study aims to determine the potential spatial groundwater pollution using the SINTACS method hydrogeological approach based on this background. The SINTACS method is a vulnerability approach by assigning a value and weight to each parameter or triggering the vulnerability. The primary data used for the vulnerability assessment were phreatic groundwater depth, soil texture, and slope. Meanwhile, the parameters of the infiltration conditions, the aeration conditions of the rocks, the compiler of lithology, and the hydraulic conductivity (K) or the passing of water in the rock were obtained from the secondary data approach. The scenario of groundwater pollution vulnerability uses the normal scenario impact approach. It is known that the condition of low vulnerability is 28% or an area of 486 km2, medium vulnerability is 20% or an area of 343.8 km2, high vulnerability is 0.04% or an area of 0.7 km2, and very high vulnerability is 52% or an area of 898.7 km2. In general, the condition of vulnerability in Bunguran Besar Island is very high.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Untitled
Subject
Type Other
  Download (633KB)    Indexing metadata
Keywords: groundwater; pollution; spatial; SINTACS; vulnerability

Article Metrics:

  1. Aller, L., Bennett, T., Lehr, J. H., & Petty, R. J. (1987). DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. United States: Office of Research and Development. Environmental Protection Agency USA
  2. Appelo, C. A. ., & Postma, D. (2007). Geochemis- try, groundwater and pollution. Amsterdam: A.A. Balkema Publishers
  3. Asdak, C. (2002). Hidrologi dan pengelolaan daerah aliran sungai. Yogyakarta: Gadjah Mada University Press
  4. Badan Informasi Geospasial (BIG). (2018a). DEMNAS 1219-6 s/d DEMNAS 1320-21. Indonesia: Badan Informasi Geospasial
  5. Badan Informasi Geospasial (BIG). (2018b). Penyusunan peta rencana detail tata ruang (RDTR) wilayah pusat kawasan strategis nasional (PKSN) perbatasan negara (Laporan Ak; D. B. IGT, Ed.). Bogor: Badan Informasi Geospasial
  6. Badan Standardisasi Nasional (BSN). (2002). Penyusunan neraca sumber daya – Bagian 1: Sumber daya air spasial SNI 19-6728.1-2002. In Badan Standardisasi Nasional (BSN). Jakarta, Indonesia: Badan Standardisasi Nasional (BSN)
  7. Badan Standardisasi Nasional (BSN). (2005). Penyelidikan potensi air tanah skala 1 : 100 . 000 atau lebih besar SNI 13-7121-2005. Jakarta, Indonesia: Badan Standardisasi Nasional (BSN)
  8. Cahyadi, A. (2019). Analisis kerentanan airtanah terhadap pencemaran di Pulau Koral sangat kecil dengan menggunakan metode GOD. Jurnal Geografi, 16(1), 48–53. doi: 10.15294/jg.v16i1.18411
  9. Civita, M, & De Maio, M. (2004). Assessing and mapping groundwater vulnerability to contamination: The Italian “combined” approach. Geofisica Internacional, 2(1), 14–28
  10. Civita, M. (1994). La carte della vulnerabilita`degli acquiferi all’inquiamento: Teoria e Pratica/Pollution vulnerability maps of aquifers: theory and practice. Bologne. Italie: Pitagora editrice
  11. Departemen Pekerjaan Umum (DPU). (2006). Standar kebutuhan air rumah tangga. Jakarta, Indonesia: Ditjen Cipta Karya
  12. Devianto, L. A., Lusiana, N., & Ramdani, F. (2019). Analisis kerentanan pencemaran air tanah di Kota Batu menggunakan analisis multikriteria spasial dengan indeks DRASTIC. Jurnal Wilayah dan Lingkungan, 7(2), 90–104. doi: 10.14710/jwl.7.2.90-104
  13. Febriarta, E., Haryono, E., & Adji, T. N. (2015). Aplikasi teknologi isotop alam untuk menentukan asal usul airtanah pesisir. Seminar Nasional Pengelolaan Pesisir dan Daerah Aliran Sungai Ke-1, 1, 100–105. doi: 10.17605/osf.io/7a5m6
  14. Febriarta, E., & Larasati, A. (2020). Karakteristik akuifer air tanah dangkal di endapan muda merapi Yogyakarta. Jurnal Sains dan Teknologi Lingkungan, 12(2), 84–99. doi: 10.20885/jstl.vol12.iss2.art1
  15. Febriarta, E., & Oktama, R. (2020). Pemetaan daya dukung lingkungan berbasis jasa ekosistem penyedia pangan dan air bersih di Kota Pekalongan. Jurnal Ilmu Lingkungan, 18(2), 283–289. doi: 10.14710/jil.18.2.283-289
  16. Febriarta, E., Prabawa, B. A., & Rosaji, F. S. C. (2018). Sumberdaya air di Pulau Pelapis Kepulauan Karimata, Kabupaten Kayong Utara, Kalimantan Barat. Seminar Nasional IV Pengelolaan Pesisir dan Daerah Aliran Sungai, 4, 174–181. doi: 10.17605/osf.io/v6nx8
  17. Febriarta, E., Suswanti, S., & Noviandaru, S. (2020). Interpretasi electrical resistivity tomography (ERT) untuk pendugaan air tanah dangkal pada formasi gunungapi muda. Jurnal Nasional Teknologi Terapan (JNTT), 3(1), 33-46. doi: 10.22146/jntt.56617
  18. Febriarta, E., & Vienastra, S. (2020). Penentuan zona kerentanan airtanah metode simple vertical vulnerability di Pulau Yeben. Jurnal Swarnabhumi : Jurnal Geografi dan Pembelajaran Geografi, 5(2), 58-66. doi: 10.31851/swarnabhumi.v5i2.4431
  19. Ferreira, J. P., Lobo, Oliveira, & Manuel, M. (2004). Groundwater vulnerability assessment in Portugal. Geofisica International, 4, 541–550
  20. Fetter, C. W. (2014). Applied hydrogeology. England: Pearson New Internasional Edition
  21. Foster, S. S. . (1987). Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy, vulnerability of soil and groundwater to pollutants. TNO Commission on Hydro Res, 38, 69–86
  22. Gunawan, W. A. F., Sisinggih, D., & Dermawan, V. (2013). Studi kerentanan air tanah terhadap kontaminan di cekungan airtanah negara Kabupaten Jembrana Provinsi Bali. Jurnal Teknik Pengairan Universitas Brawijaya, 4(2)
  23. Hakim, A. ., & Suryono, N. (1994). Peta geologi lembar Teluk Butun dan Ranai, Sumatera. Bandung: Pusat Penelitian dan Pengembangan Geologi
  24. Harter, T., & Walker, L. G. (2001). Assessing vulnerability of groundwater (L. Rollins, Ed.). California. Retrieved from https://www.scribd.com/document/269083852/Assessing-Vulnerability-of-Ground-Water
  25. Kementerian Energi dan Sumber Daya Mineral (KESDM). (2012). Geologi. Jakarta: Kementerian Energi dan Sumber Daya Mineral
  26. Kementerian Energi dan Sumber Daya Mineral (KESDM). (2015a). Litologi akuifer. Jakarta: Kementerian Energi dan Sumber Daya Mineral
  27. Kementerian Energi dan Sumber Daya Mineral (KESDM). (2015b). Produktivitas akuifer. Jakarta: Kementerian Energi dan Sumber Daya Mineral
  28. Kementerian Energi dan Sumber Daya Mineral (KESDM). (2018). Cekungan air tanah (CAT). Jakarta: Kementerian Energi dan Sumber Daya Mineral
  29. Lathamani, R., Janardhana, M. R., Mahalingam, B., & Suresha, S. (2015). Evaluation of aquifer vulnerability using drastic model and GIS: A case study of Mysore City, Karnataka, India. Aquatic Procedia, 4, 1031–1038. doi: 10.1016/j.aqpro.2015.02.130
  30. Linggasari, S., Cahyadi, T. ., & Ernawati, R. (2019). Overview metode perhitungan kerentanan airtanah terhadap rencana penambangan. Prosiding Nasional Rekayasa Teknologi Industri dan Informasi XIV Tahun 2019 (ReTII)., 14, 123–129
  31. Marfai, M. A., Febriarta, E., Hizbaron, D. R., & Larasati, A. (2020). Kajian spasial multi kriteria DRASTIC kerentanan air tanah pesisir akuifer batugamping di Tanjungbumi Madura. Jurnal Ilmu Lingkungan, 18(3), 476–487. doi: 10.14710/jil.18.3.476-487
  32. Pemerintah Republik Indonesia. (2017). Peraturan Menteri Energi dan Sumber daya Mineral No.2 Tahun 2017 tentang cekungan air tanah di Indonesia. Jakarta, Indonesia: Menteri Energi dan Sumber Daya Mineral
  33. Pemerintah Republik Indonesia. (2020). Peraturan Presiden Republik Indonesia Nomor 43 Tahun 2020 tentang rencana tata ruang kawasan perbatasan negara di Provinsi Riau dan Provinsi Kepulauan Riau. Jakarta, Indonesia: Presiden Republik Indonesia
  34. Purnama, S., & Cahyadi, A. (2019). Groundwater vulnerability to pollution in Kasihan District, Bantul Regency, Indonesia. Forum Geografi, 33(2), 140–152. doi: 10.23917/forgeo.v33i2.7672
  35. Purnama, S., Tivianton, T. A., Cahyadi, A., & Febriarta, E. (2019). Kajian daerah imbuhan airtanah di Kabupaten Ngawi. Jurnal Geografi, 16(1), 54–59. doi: 10.15294/jg.v16i1.18358
  36. Putranto, T. T., & Rüde, T. (2016). Hydrogeological model of an urban city in a Coastal Area, Case study: Semarang, Indonesia. Indonesian Journal on Geoscience, 3(1), 17-27. doi: 10.17014/ijog.3.1.17-27
  37. Putranto, T. T., Widiarso, D., & Yuslihanu, F. (2016). Studi kerentanan air tanah terhadap kontaminan menggunakan metode Drastic di Kota Pekalongan. Teknik, 37(1), 26–31. doi: 10.14710/teknik.v37i1.9637
  38. Putranto, T. T., Winarno, T., & Susanta, A. P. A. (2020). Risk assessment of groundwater abstraction vulnerability using spatial analysis: Case study at Salatiga groundwater basin, Indonesia. Indonesian Journal on Geoscience, 7(2), 215-224. doi: 10.17014/ijog.7.2.215-224
  39. Singhal, B. B., & Gupta, R. (2010). Applied hydogeology of fracture rock. London: Springer Dordrecht Heidelberg London
  40. Sisultan. (2018). Peta Tanah Skala 1:50.000. Jakarta: Kementerian Pertanian
  41. Sugianti, K., Mulyadi, D., & Maria, R. (2016). Analisis kerentanan pencemaran air tanah dengan pendekatan metode drastic di Bandung Selatan. Jurnal Lingkungan dan Bencana Geologi, 7(1), 19–33. doi: 10.34126/jlbg.v7i1.91
  42. Thapa, R., Gupta, S., Guin, S., & Kaur, H. (2018). Sensitivity analysis and mapping the potential groundwater vurnerability zones in Birbhum district, India: A comparative approach between vurnerability models. Water Science, 32(1), 44–66. doi: 10.1016/j.wsj.2018.02.003
  43. Todd, D. K., & Mays, L. W. (2005). Groundwater hydrology (3rd ed.). Denver: John Wiley & Sons, Inc
  44. Vienastra, S., & Febriarta, E. (2018). Karakteristik airtanah di Pulau Yeben, Kabupaten Raja Ampat, Papua Barat. Prosiding Pertemuan Ilmiah Tahunan Ke-3 Perhimpunan Ahli Airtanah Indonesia, 3(November), 108–113. doi: 10.17605/OSF.IO/EZHDT
  45. Voutchkova, D. D., Schullehner, J., Rasmussen, P., & Hansen, B. (2021). A high-resolution nitrate vulnerability assessment of sandy aquifers (DRASTIC-N). Journal of Environmental Management, 277, 111330. doi: 10.1016/j.jenvman.2020.111330
  46. Vrba, J., & Zaporozec, A. (1994). Guidebook on mapping groundwater vulnerability. Hannover: International Association of Hydrogeologist

Last update:

No citation recorded.

Last update:

No citation recorded.