skip to main content

Identifikasi Pengaruh Tingkat Klaster Industri Terhadap Konsentrasi Gas Emisi Di Kawasan Cikarang, Bekasi

*Caesaryo Arif Wibowo  -  Department of Urban and Regional Planning, Institut Teknologi Sepuluh Nopember, Indonesia
Alfrida Ista Anindya  -  Department of Urban and Regional Planning, Institut Teknologi Sepuluh Nopember, Indonesia
Khafizh Salsabila Widya  -  Department of Urban and Regional Planning, Institut Teknologi Sepuluh Nopember, Indonesia
Eko Budi Santoso orcid scopus  -  Department of Urban and Regional Planning, Institut Teknologi Sepuluh Nopember, Indonesia
Open Access Copyright (c) 2025 Jurnal Wilayah dan Lingkungan
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citation Format:
Abstract
Tren perubahan iklim global menyebabkan sejumlah permasalahan lingkungan termasuk peningkatan emisi Gas Rumah Kaca (GRK) yang berakibat pada pemanasan global. Kawasan Industri Cikarang merupakan kawasan industri terbesar di Indonesia dan Asia Tenggara. Sektor industri menjadi salah satu sumber emisi GRK dimana kegiatan industri mendorong peningkatan emisi secara signifikan. Menyikapi permasalahan tersebut, studi ini bertujuan menganalisis keterkaitan perkembangan lahan industri terhadap emisi GRK di Cikarang. Metode pengumpulan data secara temporal tahun 2018-2022 serta secara sekunder: data emisi dari Google Earth Engine; data persebaran lahan industri dari Open Street Map. Analisis dilakukan dengan tahapan: 1) Menghitung proporsi lahan industri terhadap luas grid; 2) Mengidentifikasi klaster dengan metode Anselin Local Moran's I; 3) Mengidentifikasi korelasi dan pengaruh klaster industri terhadap emisi GRK dengan model regresi dan Ordinary Leas Square (OLS). Temuan studi menunjukkan: 1) Persebaran proporsi grid industri mengalami perkembangan semakin banyak; 2) Klaster industri paling banyak terdapat di wilayah Cikarang Utara; 3) Perkembangan klaster industri berkorelasi positif maupun negatif terhadap jenis emisi yang berbeda di setiap tahunnya (Nitrogen Dioxide, Sulfur Dioxide, Formaldehyde, Carbon Monoxide). Dari hasil temuan studi terlihat bahwa perkembangan klaster industri berkorelasi terhadap produksi emisi GRK. Meskipun demikian, ditinjau dari hasil analisis OLS, model persamaan menunjukkan hasil yang bias (karena residu tidak terdistribusi normal) sehingga tidak layak digunakan untuk melakukan proyeksi di masa mendatang.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Copyright Transfer Agreement
Subject
Type Research Instrument
  Download (233KB)    Indexing metadata
Keywords: Emisi GRK, Kawasan Industri Cikarang, Klaster Industri

Article Metrics:

  1. An, R., & Zhu, G. (2022). Clustering of economic efficiency of urban energy carbon emissions based on decoupling theory. In Energy Reports (Vol. 8, pp. 9569–9575). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2022.07.063
  2. Anggraeni, S. (2021). Sejarah Revolusi Industri 1.0 Hingga 4.0. https://doi.org/10.13140/RG.2.2.17436.51847
  3. Astuti, D., & Setyono, J. S. (2016). Hubungan dan Aliran Informasi Antar Pelaku Pada Klaster Batik Kota Pekalongan. Jurnal Wilayah Dan Lingkungan, 4(1), 29. https://doi.org/10.14710/jwl.4.1.29-44
  4. Bappenas. (2021). Rencana Pembangunan Rendah Karbon Daerah (RPRKD) Provinsi Jawa Barat
  5. Choe, K. (KyeongAe), & Roberts, B. H. (2011). Competitive cities in the 21st century : cluster-based local economic development
  6. Danesh Shakib, M. (2020). Using system dynamics to evaluate policies for industrial clusters development. Computers and Industrial Engineering, 147. https://doi.org/10.1016/j.cie.2020.106637
  7. Nationally Determined Contribution (NDC) Pertama Republik Indonesia, Republik Indonesia (2016)
  8. Ghasempour, F., Sekertekin, A., & Kutoglu, S. H. (2021). Google Earth Engine based spatio-temporal analysis of air pollutants before and during the first wave COVID-19 outbreak over Turkey via remote sensing. Journal of Cleaner Production, 319, 128599. https://doi.org/10.1016/j.jclepro.2021.128599
  9. Hermawan, R., Savira, E. M., Al Hilal, O. J. A., Bazargan, R. M., Simandjorang, B., & Kurniawan, A. (2018). Kajian Strategi Pemerintah Daerah dalam Menghadapi Agenda Perubahan Iklim. Pusat Kajian Desentralisasi dan Otonomi Daerah Lembaga Administrasi Negara
  10. Haque, Md. N., Sharif, Md. S., Rudra, R. R., Mahi, M. M., Uddin, Md. J., &
  11. Ellah, R. G. A. (2022). Analyzing the spatio-temporal directions of air pollutants for the initial wave of Covid-19 epidemic over Bangladesh: Application of satellite imageries and Google Earth Engine. Remote Sensing Applications: Society and Environment, 28, 100862. https://doi.org/10.1016/j.rsase.2022.100862
  12. He, Y., Xing, Y., Zeng, X., Ji, Y., Hou, H., Zhang, Y., & Zhu, Z. (2022). Factors influencing carbon emissions from China’s electricity industry: Analysis using the combination of LMDI and K-means clustering. Environmental Impact Assessment Review, 93. https://doi.org/10.1016/j.eiar.2021.106724
  13. Hong, J., Gu, J., Liang, X., Liu, G., Shen, G. Q., & Tang, M. (2019). Spatiotemporal investigation of energy network patterns of agglomeration economies in China: Province-level evidence. Energy, 187. https://doi.org/10.1016/j.energy.2019.115998
  14. IPCC. (2006). Publications - IPCC-TFI. Intergovermental Panel on Climate Change (IPCC). https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html
  15. Metarapi, D., & van Elteren, J. T. (2023). High-resolution single pulse LA-ICP-MS mapping via 2D sub-pixel oversampling on orthogonal and hexagonal ablation grids – A computational assessment. Talanta, 263, 124699. https://doi.org/10.1016/j.talanta.2023.124699
  16. Nawawi, Q. (2022). Kawasan Industri Jababeka Menjadi Klaster Industri Net Zero Pertama di Asia Tenggara - Jababeka. JABABEKA&CO. https://www.jababeka.com/id/kawasan-industri-jababeka-menjadi-klaster-industri-net-zero-pertama-di-asia-tenggara/
  17. Pemda Jabar. (2021). Perubahan Rencana Pembangunan Jangka Menengah Daerah RPJMD 2018-2023
  18. Pemda Jabar. (2022). Peraturan Gubernur Jawa Barat Nomor 38 Tahun 2021 Tentang Rencana Kerja Pemerintah Daerah (RKPD) Provinsi Jawa Barat Tahun 2022. In Pemerintah Daerah Provinsi Jawa Barat (Vol. 33, Issue 1)
  19. Porter, M. E. (2007). Clusters and Economic Policy: Aligning Public Policy with the New Economics of Competition
  20. Rahaman, S. N., Ahmed, S. M. M., Zeyad, M., & Zim, A. H. (2023). Effect of vegetation and land surface temperature on NO2 concentration: A Google Earth Engine-based remote sensing approach. Urban Climate, 47, 101336. https://doi.org/10.1016/j.uclim.2022.101336
  21. Singh, A., Chakrabarty, M., Chowdhury, S., & Singh, S. (2022). Exclusive use of hygienic menstrual absorbents among rural adolescent women in India: A geospatial analysis. Clinical Epidemiology and Global Health, 17, 101116. https://doi.org/10.1016/j.cegh.2022.101116
  22. The World Bank. (2021, November 10). From Greenhouse Gases to Green Cities: Building a Low Carbon and Resilient Future. The World Bank. https://www.worldbank.org/en/news/feature/2021/11/10/from-greenhouse-gases-to-green-cities-building-a-low-carbon-and-resilient-future
  23. Tuti, W. (2021). Perkembangan Revolusi Industri. https://doi.org/10.13140/RG.2.2.32765.38886
  24. UN Indonesia. (2022, March 18). Penyebab Dan Dampak Perubahan Iklim | Perserikatan Bangsa - Bangsa di Indonesia. https://indonesia.un.org/id/175273-penyebab-dan-dampak-perubahan-iklim
  25. Wang, Q., Yang, C. hao, Wang, M. li, Zhao, L., Zhao, Y. chen, Zhang, Q. peng, & Zhang, C. yan. (2023). Decoupling analysis to assess the impact of land use patterns on carbon emissions: A case study in the Yellow River Delta efficient eco-economic zone, China. Journal of Cleaner Production, 412, 137415. https://doi.org/10.1016/J.JCLEPRO.2023.137415
  26. Xu, B., & Lin, B. (2015). How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models. Energy Economics, 48, 188–202. https://doi.org/10.1016/J.ENECO.2015.01.005
  27. Xu, J., Wang, J., Wang, T., & Li, C. (2023). Impact of industrial agglomeration on carbon emissions from dairy farming ——Empirical analysis based on life cycle assessmsent method and spatial durbin model. Journal of Cleaner Production, 406. https://doi.org/10.1016/j.jclepro.2023.137081
  28. Yu, Q., Li, M., Li, Q., Wang, Y., & Chen, W. (2022a). Economic agglomeration and emissions reduction: Does high agglomeration in China’s urban clusters lead to higher carbon intensity? Urban Climate, 43, 101174. https://doi.org/10.1016/J.UCLIM.2022.101174
  29. Yu, Q., Li, M., Li, Q., Wang, Y., & Chen, W. (2022b). Economic agglomeration and emissions reduction: Does high agglomeration in China’s urban clusters lead to higher carbon intensity? Urban Climate, 43. https://doi.org/10.1016/j.uclim.2022.101174
  30. Zhang, R., Long, Y., Wu, W., & Li, G. (2018). How do transport policies contribute to a low carbon city? An integrated assessment using an urban computable general equilibrium model. Energy Procedia, 152, 606–611. https://doi.org/10.1016/j.egypro.2018.09.218

Last update:

No citation recorded.

Last update:

No citation recorded.