skip to main content

Mobilitas Penduduk dan Kualitas Udara saat Pandemi COVID-19: Studi kasus DKI Jakarta

*Purnama Alamsyah orcid  -  Badan Riset Inovasi Nasional, Jakarta, Indonesia, Indonesia
Lukman Nul Hakim orcid scopus  -  Badan Riset Inovasi Nasional, Jakarta, Indonesia, Indonesia
Open Access Copyright (c) 2023 Jurnal Wilayah dan Lingkungan
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citation Format:
Abstract

Penelitian ini bertujuan melihat sejauh mana mobilitas penduduk berpengaruh terhadap lingkungan, khususnya kualitas udara. Para peneliti sebelumnya telah mempelajari dampak mobilitas penduduk dan kaitannya dengan ekonomi, pola penyebaran penyakit, dan psikologis.  Namun demikian masih sedikit yang meneliti bagaimana faktor lingkungan mempengaruhi dan dipengaruhi oleh mobilitas manusia. Bencana covid-19 secara kebetulan memberikan peluang bagi peneliti untuk mempelajari dengan kondisi yang sulit terulang, yaitu kondisi Kota Jakarta yang lebih lengang, dikarenakan mobilitas penduduk di Jakarta yang menurun drastis dikarenakan lockdown. Peneliti berusaha mempelajari fenomena tersebut menggunakan kerangka teori Driver–Pressure–State–Impact–Response (DPSIR). Metode penelitian yang dilakukan adalah kualitatif dengan mengkaji data mobilitas dari Google Mobility Index dan Rom tom Traffic index. Sementara sumber data respon publik diambil dari data cuitan di twitter yang diambil dari Twitter Archiving Google Sheet (TAGS) versi 6.1.7 mulai dari tanggal 15 Februari hingga 22 Mei 2020. Hasil penelitian menunjukkan bahwa penurunan mobilitas penduduk dalam berkendara ternyata tidak secara otomatis akan menurunkan kadar polutan di udara. Terdapat faktor lain yang berkontribusi terhadap polusi di Jakarta, yaitu industri yang berada di Jabodetabek yang mengelilingi Kota Jakarta. Artikel ini bermanfaat bukan saja bagi pemerhati lingkungan, melainkan juga para pengambil kebijakan, bahwa upaya memperbaiki kualitas udara di Kota Jakarta dapat dilakukan dengan mengatur mobilitas penduduk di Kota Jakarta, dan memonitor pihak industri.

Fulltext View|Download
Keywords: covid-19; DKI Jakarta; mobilitas penduduk; kualitas udara

Article Metrics:

  1. Acosta Ramírez, C., & Higham, J. E. (2022). Effects of meteorology and human mobility on UK’s air quality during COVID-19. Meteorological Applications, 29(3)(e2061)
  2. Badyda, A., Brzeziński, A., Dybicz, T., Jesionkiewicz-Niedzińska, K., Olszewski, P., Osińska, B., Szagała, P., & Mucha, D. (2022). Impact of COVID-19 Mobility Changes on Air Quality in Warsaw. Applied Sciences, 12(15), 7372
  3. Bell, S. (2012). DPSIR=A Problem Structuring Method? An exploration from the “Imagine” approach. European Journal of Operational Research, 222(2), 350–360. https://doi.org/10.1016/j.ejor.2012.04.029
  4. Bonaccorsi, G., Pierri, F., Cinelli, M., Flori, A., Galeazzi, A., Porcelli, F., Schmidt, A. L., Valensise, C. M., Scala, A., Quattrociocchi, W., & Pammolli, F. (2020). Economic and social consequences of human mobility restrictions under COVID-19. Proceedings of the National Academy of Sciences, 117(27), 15530–15535. https://doi.org/10.1073/pnas.2007658117
  5. BPS DKI Jakarta. (2022).Jumlah Kendaraan Bermotor Menurut Jenis Kendaraan (unit) di Provinsi DKI Jakarta. Diakses dari https://jakarta.bps.go.id/indicator/17/786/1/jumlah-kendaraan-bermotor-menurut-jenis-kendaraan-unit-di-provinsi-dki-jakarta.html
  6. Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The Lancet, 360(9341), 1233–1242
  7. Carnevale, C., Douros, J., Finzi, G., Graff, A., Guariso, G., Nahorski, Z., Pisoni, E., Ponche, J.-L., Real, E., Turrini, E., & Vlachokostas, C. (2016). Uncertainty evaluation in air quality planning decisions: a case study for Northern Italy. Environmental Science & Policy, 65, 39–47. https://doi.org/10.1016/j.envsci.2016.02.001
  8. Chen, P., Mao, L., Nassis, G. P., Harmer, P., Ainsworth, B. E., & Li, F. (2020). Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions. Journal of Sport and Health Science, 9(2), 103–104. https://doi.org/10.1016/j.jshs.2020.02.001
  9. Cheng, J., Su, J., Cui, T., Li, X., Dong, X., Sun, F., Yang, Y., Tong, D., Zheng, Y., Li, Y., Li, J., Zhang, Q., & He, K. (2019). Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013-2017: A model-based decomposition analysis. Atmospheric Chemistry and Physics, 19(9), 6125–6146. https://doi.org/10.5194/acp-19-6125-2019
  10. Cui, C., Wang, Z., He, P., Yuan, S., Niu, B., Kang, P., & Kang, C. (2019). Escaping from pollution: the effect of air quality on inter-city population mobility in China. Environmental Research Letters, 14(12), 124025
  11. Fisher, S., Bellinger, D. C., Cropper, M. L., Kumar, P., Binagwaho, A., Koudenoukpo, J. B., Park, Y., Taghian, G., & Landrigan, P. J. (2021). Air pollution and development in Africa: impacts on health, the economy, and human capital. The Lancet Planetary Health, 5(10), e681--e688
  12. Google. (2022). Google Covid-19 Community mobility report. Diakses dari https://www.google.com/covid19/mobility/
  13. Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151(2), 362–367
  14. Khan, I., Shah, D., & Shah, S. S. (2020). COVID-19 pandemic and its positive impacts on environment: an updated review. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-020-03021-3
  15. Kraemer, M. U. G., Yang, C.-H., Gutierrez, B., Wu, C.-H., Klein, B., Pigott, D. M., du Plessis, L., Faria, N. R., Li, R., Hanage, W. P., Brownstein, J. S., Layan, M., Vespignani, A., Tian, H., Dye, C., Pybus, O. G., & Scarpino, S. V. (2020). The effect of human mobility and control measures on the COVID-19 epidemic in China. Science, 368(6490), 493–497. https://doi.org/10.1126/science.abb4218
  16. Leroutier, M., & Quirion, P. (2022). Air pollution and CO2 from daily mobility: Who emits and Why? Evidence from Paris. Energy Economics, 109, 105941
  17. Li, Y., Beeton, R. J. S., Sigler, T., & Halog, A. (2016). Modelling the transition toward urban sustainability: a case study of the industrial city of Jinchang, China. Journal of Cleaner Production, 134, 22–30. https://doi.org/10.1016/j.jclepro.2015.10.053
  18. Linka, K., Peirlinck, M., Sahli Costabal, F., & Kuhl, E. (2020). Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions. Computer Methods in Biomechanics and Biomedical Engineering, 23(11), 710–717. https://doi.org/10.1080/10255842.2020.1759560
  19. Lu, J. G. (2020). Air pollution: A systematic review of its psychological, economic, and social effects. Current Opinion in Psychology, 32, 52–65
  20. Naufal, M. (Kompas. com. (2022). 75 Persen Polusi Udara di Jakarta berasal dari Emisi Kendaraan. https://megapolitan.kompas.com/read/2022/07/05/14453201/75-persen-polusi-udara-di-jakarta-berasal-dari-emisi-kendaraan-ini?page=all
  21. Ness, B., Anderberg, S., & Olsson, L. (2010). Structuring problems in sustainability science: The multi-level DPSIR framework. Geoforum, 41(3), 479–488. https://doi.org/10.1016/j.geoforum.2009.12.005
  22. Oliver, N., Lepri, B., Sterly, H., Lambiotte, R., Deletaille, S., De Nadai, M., Letouzé, E., Salah, A. A., Benjamins, R., Cattuto, C., Colizza, V., de Cordes, N., Fraiberger, S. P., Koebe, T., Lehmann, S., Murillo, J., Pentland, A., Pham, P. N., Pivetta, F., … Vinck, P. (2020). Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Science Advances, 6(23), eabc0764. https://doi.org/10.1126/sciadv.abc0764
  23. Satu Data Jakarta. (2018). Indeks Standar Pencemaran Udara (ISPU) Tahun 2018. Diakses dari https://satudata.jakarta.go.id/open-data/detail?kategori=dataset&page_url=indeks-standar-pencemaran-udara-ispu-tahun-2018&data_no=1
  24. Satu Data Jakarta. (2019). Indeks Standar Pencemaran Udara (ISPU) Tahun 2019. Diakses dari https://satudata.jakarta.go.id/open-data/detail?kategori=dataset&page_url=indeks-standar-pencemaran-udara-ispu-tahun-2019&data_no=1
  25. Satu Data Jakarta. (2020). Indeks Standar Pencemaran Udara (ISPU) Tahun 2020. Diakses dari https://satudata.jakarta.go.id/open-data/detail?kategori=dataset&page_url=indeks-standar-pencemaran-udara-ispu-tahun-2020&data_no=1
  26. Poudel, K., & Subedi, P. (2020). Impact of COVID-19 pandemic on socioeconomic and mental health aspects in Nepal. International Journal of Social Psychiatry, 66(8), 748–755. https://doi.org/10.1177/0020764020942247
  27. Rahman, M. M., Paul, K. C., Hossain, M. A., Ali, G. G. M. N., Rahman, M. S., & Thill, J.-C. (2021). Machine learning on the COVID-19 pandemic, human mobility and air quality: A review. Ieee Access, 9, 72420–72450
  28. Relvas, H., & Miranda, A. I. (2018). Application of the DPSIR framework to air quality approaches. Air Quality, Atmosphere & Health, 11(9), 1069–1079. https://doi.org/10.1007/s11869-018-0609-x
  29. Shanableh, A., Al-Ruzouq, R., Hamad, K., Gibril, M. B. A., Khalil, M. A., Khalifa, I., El Traboulsi, Y., Pradhan, B., Jena, R., Alani, S., & others. (2022). Effects of the COVID-19 lockdown and recovery on People’s mobility and air quality in the United Arab Emirates using satellite and ground observations. Remote Sensing Applications: Society and Environment, 26, 100757
  30. Taghizadeh-Hesary, F., & Taghizadeh-Hesary, F. (2020). The impacts of air pollution on health and economy in Southeast Asia. Energies, 13(7), 1812
  31. Toch, E., Lerner, B., Ben-Zion, E., & Ben-Gal, I. (2019). Analyzing large-scale human mobility data: a survey of machine learning methods and applications. Knowledge and Information Systems, 58(3), 501–523. https://doi.org/10.1007/s10115-018-1186-x
  32. TomTom International, BV. (2020). TomTom International BV traffic index. Diakses dari https://www.tomtom.com/en_gb/traffic-index
  33. Tscherning, K., Helming, K., Krippner, B., Sieber, S., & Paloma, S. G. y. (2012). Does research applying the DPSIR framework support decision making? Land Use Policy, 29(1), 102–110. https://doi.org/10.1016/j.landusepol.2011.05.009
  34. Wu, J., Qian, Y., Wang, Y., & Wang, N. (2021). Analyzing the Contribution of Human Mobility to Changes in Air Pollutants: Insights from the COVID-19 Lockdown in Wuhan. ISPRS International Journal of Geo-Information, 10(12), 836
  35. Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang, Y., Cheng, J., Liu, Y., Shi, Q., … Hao, J. (2019). Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116(49), 24463–24469. https://doi.org/10.1073/pnas.1907956116
  36. Zhou, C., Su, F., Pei, T., Zhang, A., Du, Y., Luo, B., Cao, Z., Wang, J., Yuan, W., Zhu, Y., Song, C., Chen, J., Xu, J., Li, F., Ma, T., Jiang, L., Yan, F., Yi, J., Hu, Y., … Xiao, H. (2020). COVID-19: Challenges to GIS with Big Data. Geography and Sustainability, 1(1), 77–87. https://doi.org/10.1016/j.geosus.2020.03.005

Last update:

No citation recorded.

Last update:

No citation recorded.