skip to main content

Potensi Serapan Karbon Inorganik pada Kawasan Karst Tropis di Karst Biduk-Biduk, Kalimantan Timur

*Danardono Danardono orcid scopus  -  Fakultas Geografi, Universitas Muhammadiyah Surakarta, Indonesia
Eko Haryono  -  Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta, Indonesia
M Widyastuti  -  Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta, Indonesia
Open Access Copyright (c) 2022 Jurnal Wilayah dan Lingkungan
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citation Format:
Abstract
The increase in carbon emissions in Indonesia is a problem that needs to be mitigated. One of the ways is to make an inventory of areas that have the potential to absorb carbon. One of areas that has the potential to absorb inorganic carbon is the karst area through the karstification process. However, research on inorganic carbon sequestration in karst areas, especially in tropical karst areas, is rarely studied. This potential needs to be studied to determine the important role of karst areas in efforts to reduce global carbon emissions. This study aims to identify the potential value of inorganic carbon sequestration; in Biduk-Biduk Karst Area and this efforts to reduce carbon emissions in Indonesia. Inorganic carbon sequestration was calculated based on the dissolution rate of carbonate rocks using standard limestone tablets. The efforts of karst areas to reduce carbon emissions was modeled by comparing the total value of inorganic carbon sequestration in karst areas with the value of carbon emissions in Indonesia. The results showed that the potential of the Biduk-Biduk Tropical Karst to absorb inorganic carbon is 726.864 tons/year-CO2. Inorganic carbon uptake shows variation based on differences in surface morphology, where areas with flat slopes have a higher inorganic carbon sequestrationn. This value can help to reduce carbon emissions in East Kalimantan by 7.3% and Indonesia by 0.5%. Therefore, conservation of karst areas is important to do to support carbon emission reduction programs in Indonesia.
Fulltext View|Download
Keywords: carbon sequestration; dissolution rate; inorganic carbon; karst; limestone tablets

Article Metrics:

  1. Akiyama, S., Hattanji, T., Matsushi, Y., & Matsukura, Y. (2015). Dissolution rates of subsoil limestone in a doline on the Akiyoshi-dai Plateau, Japan: An approach from a weathering experiment, hydrological observations, and electrical resistivity tomography. Geomorphology, 247, 2–9. doi: 10.1016/j.geomorph.2015.05.028
  2. Amin, C., Priyono, P., Jauhari, A., Priyana, Y., Priyono, K. D., & Cholil, M. (2017). Management of an underground river to overcome water scarcity in the Gunung Sewu Karst Area, Indonesia. Forum Geografi, 31(1), 176–183. doi: 10.23917/forgeo.v31i1.4502
  3. Cao, Jian-hua, Wu, X., Huang, F., Hu, B., Groves, C., Yang, H., & Zhang, C. (2018). Global significance of the carbon cycle in the karst dynamic system: Evidence from geological and ecological processes. China Geology, 1(1), 17–27. doi: 10.31035/cg2018004
  4. Cao, Jianhua, Hu, B., Groves, C., Huang, F., Yang, H., & Zhang, C. (2016). Karst dynamic system and the carbon cycle. Zeitschrift Für Geomorphologie, Supplementary Issues, 60(2), 35–55. doi: 10.1127/zfg_suppl/2016/00304
  5. Cheng, Z. (2011). Carbonate rock dissolution rates in different landuses and their. Chinese Science Bulletin, 56(35), 3759–3765. doi: 10.1007/s11434-011-4404-4
  6. Danardono, D., Haryono, E., & Widyastuti, M. (2019). The nature of carbon flux in various ecosystem types in the Biduk-Biduk Karst Region, Berau District, East Kalimantan. E3S Web Conf., 76, 1–7. doi: 10.1051/e3sconf/20197604005
  7. Danardono, D., Putra, E. B. D., Haryono, E., Nurjani, E., & Sunariya, M. I. T. (2018). Speleoclimate monitoring to assess cave tourism capacity in Gelatik Cave, Gunungsewu Geopark, Indonesia. Forum Geografi, 32(2), 181–194. doi: 10.23917/forgeo.v32i2.6958
  8. Daoxian, Y., & Cai, G. (1988). Karst Environmental Science. Chongqing: Chongqing Science and Technology Publishing
  9. Djamal, B., Sudana, D., Soetrisno, Baharuddin, & Hasan, K. (1995). Peta Geologi Lembar Tanjung Mangkalihat, Kalimantan. Bandung
  10. Englhart, S., Franke, J., Keuck, V., & Siegert, F. (2014). Carbon stock estimation of tropical forests on Borneo, Indonesia, for REDD+. In I. Manakos & M. Braun (Eds.), Land Use and Land Cover Mapping in Europe: Practices & Trends (pp. 411–427). doi: 10.1007/978-94-007-7969-3_24
  11. Ford, D. C., & Williams, P. W. (2007). Karst Hydrogeology and Geomorphology. Chicester: John Wiley and Sons Inc
  12. Gabrovšek, F. (2009). On concepts and methods for the estimation of dissolutional denudation rates in karst areas. Geomorphology, 106(1), 9–14. doi: 10.1016/j.geomorph.2008.09.008
  13. Haryono, E. (2011, January 11). Atmospheric carbon dioxide sequestrationtrough karst denudation processes estimated from Indonesian karst region. 203–207. Asian Trans-Disciplinary Karst Conference
  14. Haryono, E., Danardono, D., Mulatsih, S., Putro, S. T., & Adji, T. N. (2016a). The nature of carbon flux in Gunungsewu Karst, Java-Indonesia. Acta Carsologica, 45(2). doi: 10.3986/ac.v45i2.4541
  15. Haryono, E., Danardono, D., Mulatsih, S., Putro, S. T., & Adji, T. N. (2016b). The nature of carbon flux in Gunungsewu Karst, Java, Indonesia. Acta Carsologica, 45(1), 173–185
  16. Hertel, D., Moser, G., Culmsee, H., Erasmi, S., Horna, V., Schuldt, B., & Leuschner, C. (2009). Forest ecology and management below- and above-ground biomass and net primary production in a paleotropical natural forest ( Sulawesi , Indonesia ) as compared to neotropical forests. Forest Ecology and Management, 258(9), 1904–1912. doi: 10.1016/j.foreco.2009.07.019
  17. International Energy Agency. (2018). Emissions Factors (2018). France: International Energy Agency
  18. IPCC. (2013). Climate Change 2013: The Physical Science Basis: Working Group 1 Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press
  19. Jiang, Y. (2013). The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and δ13CDIC in Nandong, Southwest China. Journal of Contaminant Hydrology, 152, 1–11. doi: 10.1016/j.jconhyd.2013.05.010
  20. Krklec, K., Domínguez-Villar, D., Carrasco, R. M., & Pedraza, J. (2016). Current denudation rates in dolostone karst from central Spain: Implications for the formation of unroofed caves. Geomorphology, 264, 1–11. doi: 10.1016/j.geomorph.2016.04.007
  21. Liu, Z, & Zhao, J. (2000). Contribution of carbonate rock weathering to the atmospheric CO2 sink. Environmental Geology, 39(9), 1053–1058. doi: 10.1007/s002549900072
  22. Liu, Zaihua, He, S. Y., Yuan, D. X., & Zhao, J. B. (1998). The CO2 regime of soil profile and its drive to dissolution. Hydrology and Engineering Geology, 25, 42–45
  23. Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., … Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993. doi: 10.1126/science.1201609
  24. Plan, L. (2005). Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology, 68(3), 201–212. doi: 10.1016/j.geomorph.2004.11.014
  25. Rutishauser, E., Noor’an, F., Laumonier, Y., Halperin, J., Rufi’ie, Hergoualc’h, K., & Verchot, L. (2013). Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. Forest Ecology and Management, 307, 219–225. doi: 10.1016/j.foreco.2013.07.013
  26. Saner, P., Loh, Y. Y., Ong, R. C., & Hector, A. (2012). Carbon stocks and fluxes in tropical lowland dipterocarp rainforests in Sabah , Malaysian Borneo. 7(1). doi: 10.1371/journal.pone.0029642
  27. Song, X., Gao, Y., Wen, X., Guo, D., Yu, G., He, N., & Zhang, J. (2017). Carbon sequestration potential and its eco-service function in the karst area, China. Journal of Geographical Sciences, 27(8), 967–980. doi: 10.1007/s11442-017-1415-3
  28. Srijono, S., & Nadia, N. (2013). Urang Cave Karst environmental development as tourism object. Forum Geografi, 27(2), 99. doi: 10.23917/forgeo.v27i2.2369
  29. Urushibara-Yoshino, K., Miotke, F.-D., Kashima, N., Enomoto, H., Kuramoto, T., Kina, H., … Higa, M. (1999). Solution rate of limestone in Japan. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(10), 899–903. doi: 10.1016/S1464-1895(99)00133-7
  30. Yu, Y., Li, J., Zhou, Z., Zeng, L., & Zhang, C. (2020). Estimation of the value of ecosystem carbon sequestration services under different scenarios in the Central China ( the Qinling-Daba Mountain Area ). Sustainability, 12(337), 1–18
  31. Zhang, C. (2011). Carbonate rock dissolution rates in different landuses and their carbon sink effect. Chinese Science Bulletin, 56(35), 3759–3765. doi: 10.1007/s11434-011-4404-4
  32. Zhongcheng, J., & Daoxian, Y. (1999). CO2 source-sink in karst processes in karst areas of China. International Union of Geological Sciences, 22(1), 33–35. doi: 10.18814/epiiugs/1999/v22i1/005

Last update:

No citation recorded.

Last update:

No citation recorded.