skip to main content

Energy Optimization of Ethylenediamine Production Process Using Pinch Technology

Department of Industrial Technology, Vocational College, Universitas Diponegoro, Indonesia

Received: 29 Dec 2025; Revised: 31 Dec 2025; Accepted: 31 Dec 2025; Available online: 31 Dec 2025; Published: 31 Dec 2025.
Open Access Copyright (c) 2025 by Authors, Published by Vocational College of Universitas Diponegoro
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study presents a comprehensive energy optimization analysis of the ethylenediamine (EDA) production process using Pinch Technology methodology. EDA is a critical chemical compound widely utilized in pharmaceuticals, agrochemicals, polymers, and chelating agents, with its conventional production process being inherently energy-intensive. The research employs HINT (Heat Integration) software to systematically evaluate energy consumption patterns, identify heat recovery opportunities, and design an optimal heat exchanger network for the EDA production system. The production process involves the catalytic reaction between monoethanolamine (MEA) and ammonia at 235 °C and 30 atm, followed by multiple separation and purification stages. Through pinch analysis, process streams were identified and evaluated, revealing significant opportunities for internal heat recovery. The baseline system without integration showed heating requirements of 734.546 kW and cooling requirements of 734.546 kW, totaling 1,469.092 kW of external utility consumption. The analysis determined minimum energy requirements of 439.578 kW for heating and 0.0 kW for cooling utilities, with a pinch temperature of 245 K at ΔTmin of 10 K. The optimized heat exchanger network, comprising eight heat exchangers with a hierarchical configuration (H1: 55.433 kW, H2: 349.878 kW, H3: 102.454 kW, H8: 226.771 kW), achieved a total energy recovery of 735.546 kW. Compared to the non-integrated base case, the implementation of heat integration strategies resulted in remarkable energy efficiency improvements: 31% reduction in heating utility consumption (from 734.546 kW to 509.898 kW), 37% reduction in cooling utility consumption (from 734.546 kW to 440.218 kW), and an overall external utility reduction of 35.3% (from 1,469.092 kW to 950.1164 kW), representing total energy savings of 518.9756 kW. These findings demonstrate that Pinch Technology provides a thermodynamically rigorous framework for achieving substantial energy savings in EDA production facilities, contributing to reduced operational costs, lower greenhouse gas emissions, and enhanced industrial sustainability.

Fulltext View|Download
Keywords: Ethylenediamine Production; Pinch Technology; Heat Integration; Energy Optimization; Heat Exchanger Network

Article Metrics:

  1. Abu Bakar, S. H., Abd. Hamid, M. K., Wan Alwi, S. R., Abdul Manan, Z. A. (2016). Selection of minimum temperature difference (ΔTmin) for heat exchanger network synthesis based on trade-off plot. Applied Energy, 162, 1259–1271. DOI: 10.1016/j.apenergy.2015.07.056
  2. Anastasovski, A., Rasković, P., Guzović, Z. (2020). A review of heat integration approaches for organic rankine cycle with waste heat in production processes. Energy Conversion and Management, 221, 113175. DOI: 10.1016/j.enconman.2020.113175
  3. Chen, X., Zhou, S., Zhang, H., Qian, C. (2012). Synthesis of ethylenediamine in a tubular reactor: Experimental and theoretical kinetics. Progress in Reaction Kinetics and Mechanism, 37(4), 411–422. DOI: 10.3184/146867812X13452764677492
  4. Hobson, M., Ozturk, B. (2022). Heat Exchanger Design Handbook (3rd ed.). CRC Press, Boca Raton, FL
  5. Jun, L. N., B. Bahari, M., Setiabudi, H. D., Jalil, A. A., Vo, D.-V. N. (2021). Greenhouse gas mitigation and hydrogen generation via enhanced ethylene glycol dry reforming on La-promoted Co/Al2O3 catalyst. Process Safety and Environmental Protection, 150, 356–364. DOI: 10.1016/j.psep.2021.04.019
  6. Klemeš, J. J., Varbanov, P. S., Ocłoń, P., Chin, H. H. (2019). Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies. Energies, 12(21), 4092. DOI: 10.3390/en12214092
  7. Klemeš, J. J., Varbanov, P. S., Walmsley, T. G., Jia, X. (2018). New directions in the implementation of Pinch Methodology (PM). Renewable and Sustainable Energy Reviews, 98(October), 439–468. DOI: 10.1016/j.rser.2018.09.030
  8. Konur, O., Yuksel, O., Aykut Korkmaz, S., Ozgur Colpan, C., Saatcioglu, O. Y., Koseoglu, B. (2023). Operation-dependent exergetic sustainability assessment and environmental analysis on a large tanker ship utilizing Organic Rankine cycle system. Energy, 262, 125477. DOI: 10.1016/j.energy.2022.125477
  9. Lee, S. (2006). Encyclopedia of Chemical Processing (1st Volume). Taylor & Francis
  10. Linnhoff, B., Flower, J. R. (1978). Synthesis of Heat Exchanger Networks. AlChE Journal, 24(4), 633–642. DOI: 10.1002/aic.69024041115
  11. Linnhoff, B., Hindmarsh, E. (1983). The pinch design method for heat exchanger networks. Chemical Engineering Science, 38(5), 745–763. DOI: 10.1016/0009-2509(83)80185-7
  12. Li, B.-H., Chota Castillo, Y. E., Chang, C.-T. (2019). An improved design method for retrofitting industrial heat exchanger networks based on Pinch Analysis. Chemical Engineering Research and Design, 148, 260–270. DOI: 10.1016/j.cherd.2019.06.008
  13. Liu, J., Benyahia, B. (2022). Optimal start-up strategies of a combined cooling and antisolvent multistage continuous crystallization process. Computers & Chemical Engineering, 159, 107671. DOI: 10.1016/j.compchemeng.2022.107671
  14. Lu, D., Theotokatos, G., Zhang, J., Zeng, H., Cui, K. (2022). Parametric investigation of a large marine two-stroke diesel engine equipped with exhaust gas recirculation and turbocharger cut out systems. Applied Thermal Engineering, 200, 117654. DOI: 10.1016/j.applthermaleng.2021.117654
  15. Morosuk, T., Tsatsaronis, G. (2009). Advanced exergetic evaluation of refrigeration machines using different working fluids. Energy, 34(12), 2248–2258. DOI: 10.1016/j.energy.2009.01.006
  16. Nami, H., Arabkoohsar, A., Anvari-Moghaddam, A. (2019). Thermodynamic and sustainability analysis of a municipal waste-driven combined cooling, heating and power (CCHP) plant. Energy Conversion and Management, 201, 112158. DOI: 10.1016/j.enconman.2019.112158
  17. Ononogbo, C., Nwosu, E. C., Nwakuba, N. R., Nwaji, G. N., Nwufo, O. C., Chukwuezie, O. C., Chukwu, M. M., Anyanwu, E. E. (2023). Opportunities of waste heat recovery from various sources: Review of technologies and implementation. Heliyon, 9(2), e13590. DOI: 10.1016/j.heliyon.2023.e13590
  18. Palacios-Bereche, R., Ensinas, A. V., Modesto, M., Nebra, S. A. (2015). Double-effect distillation and thermal integration applied to the ethanol production process. Energy, 82, 512–523. DOI: 10.1016/j.energy.2015.01.062
  19. Sanchez, S. A., Nunberg, S., Cnossen, K., Eckelman, M. J. (2023). Life cycle assessment of anoxic treatments for cultural heritage preservation. Resources, Conservation and Recycling, 190, 106825. DOI: 10.1016/j.resconrec.2022.106825
  20. Shi, B., Yan, L.-X., Wu, W. (2013). Multi-objective optimization for combined heat and power economic dispatch with power transmission loss and emission reduction. Energy, 56, 135–143. DOI: 10.1016/j.energy.2013.04.066
  21. Walden, J. V. M., Wellig, B., Stathopoulos, P. (2023). Heat pump integration in non-continuous industrial processes by Dynamic Pinch Analysis Targeting. Applied Energy, 352, 121933. DOI: 10.1016/j.apenergy.2023.121933
  22. Walmsley, T. G., Lincoln, B. J., Padullés, R., Cleland, D. J. (2024). Advancing Industrial Process Electrification and Heat Pump Integration with New Exergy Pinch Analysis Targeting Techniques. Energies, 17(12), 2838. DOI: 10.3390/en17122838
  23. Walmsley, T. G., Walmsley, M. R. W., Atkins, M. J., Neale, J. R. (2014). Integration of industrial solar and gaseous waste heat into heat recovery loops using constant and variable temperature storage. Energy, 75, 53–67. DOI: 10.1016/j.energy.2014.01.103
  24. Xu, Y., Liu, W., Zhang, L., Cui, G., Xiao, Y., Zhang, G., Yang, Q. (2024). A comprehensive review of recent advancements and developments in heat exchanger network synthesis techniques. Science China Technological Sciences, 67(2), 335–356. DOI: 10.1007/s11431-022-2337-1
  25. Zhu, X., Tsang, D. C. W., Wang, L., Su, Z., Hou, D., Li, L., Shang, J. (2020). Machine learning exploration of the critical factors for CO2 adsorption capacity on porous carbon materials at different pressures. Journal of Cleaner Production, 273, 122915. DOI: 10.1016/j.jclepro.2020.122915

Last update:

No citation recorded.

Last update:

No citation recorded.