skip to main content

Energy Efficiency Analysis Using Pinch Technology in the Preliminary Design of a Nitromethane Plant from Nitric Acid and Methane

Department of Industrial Technology, Vocational College, Universitas Diponegoro, Indonesia

Received: 29 Dec 2025; Revised: 31 Dec 2025; Accepted: 31 Dec 2025; Available online: 31 Dec 2025; Published: 31 Dec 2025.
Open Access Copyright (c) 2025 by Authors, Published by Vocational College of Universitas Diponegoro
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The production process of nitromethane through vapor phase nitration reaction between nitric acid and methane is a highly energy-intensive process requiring heating at high temperatures up to 653 K. The significant dependence on external utilities results in high operational costs and carbon emissions, necessitating energy system optimization to enhance efficiency and product competitiveness. This study aims to analyze energy efficiency in the preliminary design of a 25,000 tons per year nitromethane plant using pinch technology to determine minimum energy requirements and design an optimal Heat Exchanger Network. The pinch analysis method was applied by extracting process stream data including mass flow rate, heat capacity, inlet and outlet temperatures from four main heat exchanger units. The analysis was conducted using problem table, composite curve, and grid diagram with a ΔTmin value of 10 K. The analysis results show that the system requires a minimum hot utility of 798.418 kW and cold utility of 1,925.67 kW with a pinch temperature at 308 K. The optimal Heat Exchanger Network configuration successfully reduced the furnace load to 313.303 kW through internal heat integration, utilizing sensible heat from high-temperature reactor products for feed preheating. The implementation of pinch technology in this system has the potential to generate significant energy savings compared to conventional design, while contributing to CO₂ emission reduction and enhancing sustainability of chemical industrial processes.

Fulltext View|Download
Keywords: Pinch Technology; Energy Efficiency; Nitromethane; Heat Exchanger Network; Heat Integration

Article Metrics:

  1. Albright, L. F., Carr, R. V. C., Schmitt, R. J. (1996). Nitration: Recent laboratory and industrial developments. In Nitration (Chapter 1, pp. 1–26). ACS Symposium Series, Vol. 623. American Chemical Society. DOI: 10.1021/bk-1996-0623.ch001
  2. Aziz, E., Mukhtar, A., Daud, Y. M., Sata, S. A. (2022). A comprehensive carbon dioxide reduction framework for industrial site using pinch analysis tools with a fuel cell configuration. Journal of Cleaner Production, 369, 132633. DOI: 10.1016/j.jclepro.2022.132633
  3. Bakar, S. H. A., Hamid, M. K. A., Alwi, S. R. W., Manan, Z. A. (2016). Selection of minimum temperature difference (ΔTmin) for heat exchanger network synthesis based on trade-off plot. Applied Energy, 162, 1259–1271. DOI: 10.1016/j.apenergy.2015.07.056
  4. Čuček, L., Klemeš, J. J., Kravanja, Z. (2012). A review of footprint analysis tools for monitoring impacts on sustainability. Journal of Cleaner Production, 34, 9–20. DOI: 10.1016/j.jclepro.2012.02.036
  5. Escobar, M., Trierweiler, J. O., Grossmann, I. E. (2013). Simultaneous synthesis of heat exchanger networks with operability considerations: Flexibility and controllability. Computers & Chemical Engineering, 55, 158-180. DOI: 10.1016/j.compchemeng.2013.04.010
  6. Furman, K. C., Sahinidis, N. V. (2002). A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century. Industrial & Engineering Chemistry Research, 41(10), 2335–2370. DOI: 10.1021/ie010389e
  7. Kemp, I. C. (2007). Pinch analysis and process integration: A user guide on process integration for the efficient use of energy (2nd ed.). Butterworth-Heinemann, Elsevier. DOI: 10.1016/B978-0-7506-8260-2.X5001-9
  8. Klemeš, J. J., Friedler, F., Bulatov, I., Varbanov, P. S. (2010). Sustainability in the process industry: Integration and optimization. McGraw-Hill Professional
  9. Lei, Z., Li, C., Chen, B. (2003). Extractive distillation: A review. Separation & Purification Reviews, 32(2), 121-213. DOI: 10.1081/SPM-120026627
  10. Linnhoff, B. (1993). Pinch analysis—A state-of-the-art overview. Chemical Engineering Research and Design, 71(A5), 503–522
  11. Linnhoff, B., Ahmad, S. (1990). Cost optimum heat exchanger networks—1. Minimum energy and capital using simple models for capital cost. Computers & Chemical Engineering, 14(7), 729–750. DOI: 10.1016/0098-1354(90)87083-2
  12. Linnhoff, B., Hindmarsh, E. (1983). The pinch design method for heat exchanger networks. Chemical Engineering Science, 38(5), 745-763. DOI: 10.1016/0009-2509(83)80185-7
  13. Morar, M., Agachi, P. S. (2010). Review: Important contributions in development and improvement of the heat integration techniques. Computers & Chemical Engineering, 34(8), 1171–1179. DOI: 10.1016/j.compchemeng.2010.01.017
  14. Rahaghi, M. M., & Hayati-Ashtiani, M. (2025). The Study of Decrease in CO2 Emission Using Pinch Technology. Chemical Process Design, 4(2), 24-37. DOI: 10.22111/cpd.2025.51789.1055
  15. Rahmi, T. M., Siregar, H. K. (2023). Pra rancangan pabrik nitrometana dari asam nitrat dan metana kapasitas 25.000 ton/tahun. Universitas Islam Indonesia. https://dspace.uii.ac.id/handle/123456789/42724
  16. Seider, W. D., Lewin, D. R., Seader, J. D., Widagdo, S., Gani, R., Ng, K. M. (2017). Product and process design principles: Synthesis, analysis, and evaluation (4th ed.). John Wiley & Sons, Hoboken, NJ. DOI: 10.1002/9781119355243
  17. Smith, R. (2016). Chemical process design and integration (2nd ed.). John Wiley & Sons. DOI: 10.1002/9781119990826
  18. Yee, T. F., Grossmann, I. E. (1990). Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis. Computers & Chemical Engineering, 14(10), 1165-1184. DOI: 10.1016/0098-1354(90)85010-8

Last update:

No citation recorded.

Last update:

No citation recorded.