skip to main content

Optimization of Pb(II) Metal Adsorption on Pomelo Peel Biosorbent by Immobilization in Ca-Alginate

*Zulfa Wulandari Rasyid  -  Industrial Chemical Engineering, Department of Technology and Industry, Vocational School, Diponegoro University, Jl. Prof Soedarto. SH, Tembalang, Semarang, 50275, Indonesia, Indonesia
Vita Paramita scopus  -  Industrial Chemical Engineering, Department of Technology and Industry, Vocational School, Diponegoro University, Jl. Prof Soedarto. SH, Tembalang, Semarang, 50275, Indonesia, Indonesia
Open Access Copyright 2022 Journal of Vocational Studies on Applied Research under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Industrial wastewater is a source of water pollution that dominates today. Wastewater is known to cause damage to the environment, health and threatens the availability of clean water. Industrial wastewater is a problem because it contains a lot of dangerous heavy metals, one of which is Lead or Pb(II).' Adsorption technology has become one of the most exciting technologies because of its good performance. Adsorption media currently popular for the study is adsorption using agricultural waste. One of the agricultural wastes that can be used as biosorbent is grapefruit peel (Citrus maxima). The functional groups in grapefruit peel are ether, pedophilic, carboxyl, carbonyl, and hydroxyl. These functional groups are essential in binding heavy metals from the aquatic environment. In this study, grapefruit peel was modified into a Ca-alginate immobilized biosorbent. The analyzes that will be carried out include the characteristics of the biosorbent, namely the water content and ash content test, the FTIR test to determine the functional groups contained in the biosorbent, the SEM-EDX test to assess the appearance of the biosorbent, as well as analysis of the initial and final levels of Pb(II). Based on the results obtained, the best percentage decrease in Pb(II) levels was obtained with operating conditions of pH 4.7, contact time of 90 minutes, and Pb(II) concentration of 100 mg/L with a percentage decrease in Pb(II) levels of 89%.

Fulltext View|Download
Keywords: Immobilization, Biosorbent, Pomelo Peel, Pb(II)

Article Metrics:

  1. Aichour, A., & Zaghouane-Boudiaf, H. (2020). Single and competitive adsorption studies of two cationic dyes from aqueous mediums onto cellulose-based modified citrus peels/calcium alginate composite. International Journal of Biological Macromolecules, 154, 1227–1236. https://doi.org/10.1016/j.ijbiomac.2019.10.277
  2. Aichour, A., Zaghouane-Boudiaf, H., Iborra, C. V., & Polo, M. S. (2018). Bioadsorbent beads prepared from activated biomass/alginate for enhanced removal of cationic dye from water medium: Kinetics, equilibrium and thermodynamic studies. Journal of Molecular Liquids, 256(February), 533–540. https://doi.org/10.1016/j.molliq.2018.02.073
  3. Dinh, V. P., Xuan, T. D., Hung, N. Q., Luu, T. T., Do, T. T. T., Nguyen, T. D., Nguyen, V. D., Anh, T. T. K., & Tran, N. Q. (2020). Primary biosorption mechanism of lead (II) and cadmium (II) cations from aqueous solution by pomelo (Citrus maxima) fruit peels. Environmental Science and Pollution Research, Ii. https://doi.org/10.1007/s11356-020-10176-6
  4. Haqiqi, E. R. (2018). Analisis FTIR (Fourier Transform InfraRed) Adsorben Zat Warna dari Limbah Cangkang Telur Ayam Dikombinasi Biomassa Sekam Padi (pp. 17–25)
  5. Huang, Z., Xiong, C., Zhao, M., Wang, S., Zhou, Y., Dai, L., & Zhang, L. (2021). Surface-functionalized pomelo peel-derived biochar with mercapto-1,2,4-triazloe for selective elimination of toxic Pb (II) in aqueous solutions. Advanced Powder Technology, 32(4), 1013–1022. https://doi.org/10.1016/j.apt.2021.02.004
  6. Kumar, P. S., Gayathri, R., & Rathi, B. S. (2021). A review on adsorptive separation of toxic metals from aquatic system using biochar produced from agro-waste. Chemosphere, 285(June), 131438. https://doi.org/10.1016/j.chemosphere.2021.131438
  7. Nurhidayah, Gusti, D. R., Merlinda, L., & Lestari, I. (2020). Biosorpsi ion Cd +2 oleh adsorben dari daun nenas (Ananas comosus) teramobilisasi dalam Ca-alginat. 139–146
  8. Rafsanjani, M. K., & Putri, W. D. R. (2015). Karakterisasi Ekstrak Kulit Jeruk Bali Menggunakan Metode Ultrasonic Bath (Kajian Perbedaan Pelarut dan Lama Ekstraksi). Jurnal Pangan Dan Agroindustri, 3(4), 1473–1480
  9. Sa’diyah, K., Lusiani, C. E., Chrisnandari, R. D., Witasari, W. S., Aula, D. L., & Triastutik, S. (2020). PENGARUH PROSES AKTIVASI KIMIA TERHADAP KARAKTERISTIK ADSORBEN DARI KULIT PISANG KEPOK (Musa acuminate L.). Jurnal Chemurgy, 4(1), 18. https://doi.org/10.30872/cmg.v4i1.4074
  10. Sekarwati, N., Murachman, B., & Sunarto. (2015). Dampak logam berat Cu (tembaga) dan Ag (perak) pada limbah cair industri perak terhadap kualitas air sumur dan kesehatan masyarakat serta upaya pengendaliannya di Kota Gede Yogyakarta. Jurnal Ekosains, VII(1), 13. http://pasca.uns.ac.id/s2ilmulingkungan/wp-content/uploads/sites/25/2016/09/PUBLIKASI-NOVITA.pdf
  11. Sylvia, N., Sobrina, L., & Nasrun, N. (2019). Optimasi Proses Penyerapan CO2 dengan Adsorben Karbon Aktif Menggunakan Computational Fluid Dynamics (CFD) dan Response Surface Methodology (RSM). Jurnal Teknologi Kimia Unimal, 8(1), 69. https://doi.org/10.29103/jtku.v8i1.1918
  12. Yu, X. L., & He, Y. (2018). Optimal ranges of variables for an effective adsorption of lead(II) by the agricultural waste pomelo (Citrus grandis) peels using Doehlert designs. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-19227-y

Last update:

No citation recorded.

Last update:

No citation recorded.