skip to main content

Comparative Results of Regional and Residual Anomalies with the Upward Continuation, Moving Average, and Polynomial Methods for Magnetic Data

Luvera Deva Intan Indrawati  -  Physics Undergraduate Study Program, Department of Physics, Diponegoro University, Indonesia
*rina dwi indriana orcid scopus  -  Department of Physics, Diponegoro University, Indonesia
Irham Nurwidyanto  -  Department of Physics, Diponegoro University, Indonesia
Received: 27 Apr 2020; Revised: 13 May 2020; Accepted: 15 May 2020; Available online: 10 Jun 2020; Published: 10 Jun 2020.

Citation Format:
Abstract

Geophysics programing of regional and residual anomaly separation on Magnetic data has been carried out with the results compared with the upward continuation method in the OasisMontaj software. Separation of anomalies with moving average and polynomial methods is processed using Matlab programming. The orders used in the polynomial method are first-order, second-order and third-order. Comparison is done by calculating the match value. The chosen matching method is autocorrelation. Correlation of residual magnetic anomalies resulting from upward continuation (Magpick) to moving averages, 1st-order polynomials, 2nd-order polynomials and 3rd-order polynomials. Correlation values obtained for the moving average method are 0.9604, first order polynomial 0.9072, 2nd order polynomial 0.9482 and third order polynomial 0.6057. The moving average and second order polynomial methods can be used as a substitute method if we do not use the upward continuation method.

Fulltext View|Download
Keywords: Magnetic method, regional and residual anomaly separation, Upward Continuation, Moving Average, Polynomial.

Article Metrics:

  1. .Abdelrahman, 1996, Shape and Depth Solution From Moving Average Residual Gravity Anomalies, Egypt: Journal of Applied Geophysics, Vol. 20, pp.89-95
  2. .Blakely, R. 1995, Potential Theory in Gravity and Magnetic Applications, Cambrige University Press, USA
  3. .Dobrin, M.B. & Savit, C.H., 1988, Introduction to Geophysical Prospecting (4thedn), McGraw Hill, New York
  4. .Grandis, H., 2009, Pengantar Pemodelan Inversi Geofisika. Institut Teknologi Bandung
  5. .Grant, F., & West, G. 1965, Gravity and Magnetic Methods, University of Toronto, Toronto
  6. .Haerudin, & Karyanto, 2006, Aplikasi Metode Polinomial Least Square Berbasis Matlab Untuk Memisahkan Efek Residual Anomali Regional Pada Data Gravitasi, J. Sains MIPA April 2007, Vol:13,No.1,32-36
  7. .Hinze, J., Von Freese, & Saad A. 1965. Gravity and Magnetic Exploration, Cambridge University Press, Cambridge
  8. .Islamiyah, 2015, Analisis Data Anomali Gravitasi Untuk Memodelkan Struktur Geologi Bawah Permukaan Ranu Segaran, skripsi, Fisika, Fakultas Sains dan Matematika, Universitas Islam Negeri Maulana Malik Ibrahim Malang
  9. .Kadir, W.G.A, 2000, Eksplorasi Gayaberat dan Magnetik, Jurusan Teknik Geofisika Fakultas Ilmu Kebumian dan Teknologi Mineral, Institut Teknoligi Bandung
  10. .Purnomo, Jarot, Koesuma, Sorjana dan Yunianto Mohtar, 2013, Pemisahan Anomali Regional-Residual pada Metode Gravitasi Menggunakan Metode Upward Continuation, Moving Average dan Polinomial, Indonesian Journal of Applied Physics, Vol:3, No.1, hal.10
  11. .Sehah, R., S.A., Wibowo. O., 2014. Pendugaan Model Sumber Anomali
  12. Magnetik Bawa Permukaan di Area Pertambangan Emas Rakyat Desa
  13. Paningkaban Kecamatan Gumelar Kabupaten Banyumas. Jurnal Fisika
  14. Indonesia No : 53 Vol XVIII Edisi Agustus 2014, 38 – 42
  15. .Telford, W., Geldart, L., & Sherif, R. 1990. Applied Geophysics. New York: Cambridge University Press

Last update:

No citation recorded.

Last update:

No citation recorded.