skip to main content

Zinc Oxide Nanoparticles (ZnONPs) Photocatalyst using Pulse Laser Ablation Method for Antibacterial in Water Polluted

Fatkhiyatus Saadah  -  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Indonesia
Rizka Zakiyatul Miskiyah  -  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Indonesia
*Ali Khumaeni  -  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Indonesia
Received: 20 May 2020; Revised: 4 Jun 2020; Accepted: 6 Jun 2020; Available online: 10 Jun 2020; Published: 10 Jun 2020.

Citation Format:
Abstract
Synthesis of zinc oxide nanoparticles by pulse laser ablation method has been successed carried out. Synthesis was carried out in aquades medium with a repetition rate variation of 5 Hz, 10 Hz and 15 Hz pulse laser yielding brown colloids. The higher laser repetition rate, the colloidal color will be more dark brown. Characterization of zinc oxide nanoparticles includes UV-Vis, SEM-EDX, FTIR and XRD. The image of SEM shows that zinc oxide nanoparticles have a round shape. Measurement of particle distribution with imageJ software from SEM images showed that ZnO nanoparticles were 23.63 nm, 12.13 nm and 5.59 nm for 5 Hz, 10 Hz and 15 Hz shots. The EDX spectrum analysis results show that only Zn and O atoms in the ZnO nanoparticles colloid are synthesized. FTIR results showed that sprocket ZnO was formed at wave number 457 cm-1 and 545 cm-1. The XRD analysis results also show some peaks known as the ZnO phase. This indicates that ZnO nanoparticles have been formed. The testing of the antibacterial activity of ZnO nanoparticles using a liquid dilution method with nanoparticle concentrations of 40 ppm, 60 ppm and 80 ppm. The test results showed the percentage of degradation of Escherichia coli bacteria at concentrations of 40 ppm, 60 ppm and 80 ppm respectively at 89.60%, 97.76% and 98, 70%.
Fulltext View|Download
Keywords: Zinc Oxide Nanoparticles, Pulse Laser Ablation, Antibacterials, Photocatalyst

Article Metrics:

  1. Owa, F.W., 2014, Water Pollution : source, effect, control and management,International letters of natural science, 3 : 1-6
  2. Panagos, P., Van Liederke, M., Yigini, Y., Montanarella, L., 2013, Contaminated sites in europe : review of the current situation based on data collected through a european network, J. Environ, Public Health 2013 11
  3. Best, E., Pamell, P., Couturier, J., Barbut, F., Le Bozec, A., Arnoldo, L., Madia, A., Brusaferro, S., Wilcox, M.H., 2018, Multicentre to examine the extent of enviromental contamination by potential bacteria pathogens including antibiotc resistant bacteria in hospital washrooms according to hand-drying method, Journal of Hospital Infection
  4. Gadi, R., Kalra, S., Yadav, V.B., 2019, Study of heavy metal pollution, ecological risk and source apportionment in the surface water and sediments of the Jiangsu coastal region, China: A case study of the Sheyang Estuary, Journal of Enviromental Management 232, 803-817
  5. Chen, Y., Zhao, L., Wang, Z., Liu, Q., Xu, M., Zhao, Y., 2018, Study of heavy metal pollution, ecological risk and source apportionment in the surface water and sediments of the Jiangsu coastal region, China: A case study of the Sheyang Estuary, Marine Pollution Bulletin, 137, 601-609
  6. World Health Organization, 2017, Guidelines for drinking-water quality, fourth ed, incorpoating the 1st addendum
  7. Martins, C.C., Kolm, H.E., Gomes, K.V., Ishii, F.K., 2018, An integrated appraisement of multiple faecal indicator bacteria and sterols in the detection of sewage contamination in subtropical tidal creeks, International Journal of Hygiene and Enviromental Health
  8. Bighiu, M.A., Halden, A.N., Geodkoop, W., Ottoson, J., 2019, Assesing microbial contamination and antibiotic resistant bacteria using zebra mussels (Dreissena polymorpha), Science Total Environment, 650, 2141-2149
  9. Al-Harassi, N., Al-Mayahi, A., Al-Ismaily, S., Sharooma, B., 2019, The role or urbanization in soil and groundwater contamination by heavy metals and phatogenic bacteria : A case study from Oman, Heliyon, 5, e01771
  10. Peixe, L., Novais, C., Pereira, J., Mourao, J., Campos, J., Antunes, P., 2018, Inflow water is a major source of trout farming contamination with Salmonella and multidrug resistant bacteria, Science of the Total Environment, 642, 1163-1171
  11. Wang, J., Ge, W., Zhu, L., Wang, J., Zhao, X., Wang, L., 2019, Macroclide and quinolone resistant bacteria and resistance gees as indicator of antibiotic resistance gene contamination in farmland soil with manure application, Ecological Indicators, 106, 105456
  12. Trevisan, D., Vansteelant, J.Y., Dorioz, J.M., 2002, Survival and leaching of fecal bacteria after slurry spreading on mountain hay meadows : consequence for the management of water contamination risk, Water Research, 36, 275-283
  13. Hofstra, N., Sokolova, E., Islam, M.M.M., 2018, Modelling of river faecal indicator bacteria dynamic as a basis for faecal conatmination reduction, Journal of Hidrology, 563, 1000-1008
  14. Nagaraju, G., Udayabhanu, Shivaraj, Prashanth, S.A., Shastri, M., Yathish, K.V., Anupama, C., Rangappa, D., 2017, Electrochemical heavy metal detection, photocatalytic,
  15. photoluminescence, biodiesel production and antibacterial activities of
  16. Ag–ZnO nanomaterial, Materials Research Bulletin, 94, 54-63
  17. Saleem, M.A., Salem, I.A., El-Ghobashy, M., 2017, The dual role of ZnO nanoparticles for efficient capture of heavy metals and Acid blue 92 from water, Journal of Molecular Liquids, 248, 527-538
  18. Feng, J., Guo, X., Chen, Y., Lu, D., Niu, Z., Tou, F., Hou, L., Xu, J., Liu, M., Yang, Y., 2020, Time-dependent effects of ZnO nanoparticles on bacteria in an estuarine
  19. aquatic environment, Science the Total Environment, 698, 134298
  20. Bae, S., Joo, S.H., Toborek, M., 2019, Treatment of antibiotic-resistant bacteria by encapsulation of ZnO nanoparticles in an alginate biopolymer: Insights into treatment mechanisms, Journal of Hazardous Materials, 373, 122-130
  21. Hilal, H. S., Jaber, A. F., Helal, M. H., Hamdan, S., Salman, M., Yousef, O., Alkowni, R., Zyoud, A., 2019, Solar light-driven complete mineralization of aqueous gram-positive and
  22. gram-negative bacteria with ZnO photocatalyst, Solar Energy, 180, 351-359
  23. Pung, Swee-Yong, Le, A.T., Sreekantan, S., Atsunori, M., Huynh, D.P., 2018, Mechanism of removal of heavy metal ions by ZnO particles, Heliyon (5) e01440
  24. Habibi-Yangjeh, A., Pirhashemi, M., Pouran, S.R., 2018, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts, Journal of Industrial and Engineering Chemistry, 62, 1-25
  25. Yang, D. C., Lu, J., Abid, S.,Rupa, E.J., Ahn, J.C., Kaliraj, L., 2019, Synthesis of panos extract mediated ZnO nano-flowers as photocatalyst for industrial dye degradation by UV illumination, Journal of Photochemistry & Photobiology, B: Biology, 199, 111588
  26. Sanchez, L., Pavlovic, I., Cruz-Yusta, M., Balbuena, J., Pastor, A., 2019, ZnO on rice husk : A suistainable photocatalyst for urban air purification, Chemical Engineering Journal, 368, 659-667
  27. La Rosa, J. R. D., Gonzales-Casamachin, D. A., Luio-Orts, C.J., De Rio, D. A. D. H., Martinez-Vargas, D.X., Flores-Escamilla, G.A., Guzman, N. E. D., Ovando-Medina, V. M., Moctezuma-Velazquez, E., 2019, Visible-light photocatalytic degradation of acid violet 7 dye in a continuous annular reactor using ZnO/PPy photocatalyst: Synthesis, characterization, mass transfer effect evaluation and kinetic analysis, Chemical Journal Engineering, 373, 325-337
  28. Raizada, P., Kumari, J., Shandilya, P., Singh,P., Kinetics of photocatalytic
  29. mineralization of oxytetracycline and ampicillin using activated carbon
  30. supported ZnO/ZnWO4, Desalin. Water Treat. 79 (2017) 204–213
  31. Raizada, P., Sudhaik, A., Singh, P., 2019, Photocatalytic water decontamination using graphene and ZnO coupled photocatalytic, Material Science for Energy Technologies, 2, 509-525
  32. Sutanto, H, Iis N dan Eko H. 2015. Sintesis Lapisan Tipis Seng Oksida Didoping Perak (ZnOo:Ag) dan Aplikasinya untuk Pendegradasi Polutan Organik Air. Jurnal Berkala Fisika. Volume (18) : 131-136
  33. Zamiri, R., Zakaria, A., Hossein, A., Majid Darroudi, Golnoosh Zamir, Zahid Rizwan dan Gregor PC Drummen. 2013. The effect of laser repetition rate on the LASiS synthesis of biocompatible silver nanoparticles in aqueous starch solution. International Journal of Nanomedicine. 2013(8) : 233–244
  34. Menendez, A dan Barcikowski, S. 2011. Hydrodynamic size ditribution of gold nanoparticles controlled by repetition rate during pulsed laser ablation method. Journal Applied Surface Science. 257 (9) : 4285 – 4290
  35. Budi, WS. 2012. Spektroskopi Plasma Laser . Semarang : UPT UNDIP Press
  36. Wang, C., Liu, L.L, Zhang, A.T, Xie P., Lu, J.J., dan Zou, X.T. 2012. Antibacterial effects of zinc oxide nanoparticles on Escherichia coli K88. African Journal of Biotechnology. Vol. 11(44), pp. 10248-10254, ISSN: 1684–5315
  37. Jawetz, Melnick, Adelberg. 2007. Mikrobiologi Kedokteran Edisi 23. Jakarta : ISBN 978-979-448-859-1
  38. Mahmodi, S., Elmi, A dan Nezhadi, S.H. 2018. Copper nanoparticles as antibacterial agents. Molecular pharmaceutics and organic process research 6 (1)
  39. Nuraina. 2015. Uji aktivitas antimikroba ekstrak daun Garcinia benthami pierre dengan metode dilusi. Skripsi. Jakarta : UIN Syarif Hidayatullah
  40. Sirelkhatim, A., Mahmud, S., Seeni, A. dan Mohammad, D. 2015. Review on Zinc Oxide Sutanto, H, Iis N dan Eko H. 2015. Sintesis Lapisan Tipis Seng Oksida Didoping Perak (ZnOo:Ag) dan Aplikasinya untuk Pendegradasi Polutan Organik Air. Jurnal Berkala Fisika. Volume (18) : 131-136Nanoparticles : Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 7 (3) : 219 - 242

Last update:

No citation recorded.

Last update:

No citation recorded.