skip to main content

Classification of CT Scan Images of Stroke Patients and Normal Brain Based on Histogram, GLCM, and GLRLM Texture Features using K-Nearest Neighbor

Fitria Kholbi Azizah  -  Department of Physics, Faculty of Science, Universitas Islam Negeri Walisongo Semarang, Indonesia
Diana Salsabila Putri  -  Department of Physics, Faculty of Science, Universitas Islam Negeri Walisongo Semarang, Indonesia
Riyan Permana  -  Department of Physics, Faculty of Science, Universitas Islam Negeri Walisongo Semarang, Indonesia
*Heni Sumarti orcid scopus  -  Department of Physics, Faculty of Science, Universitas Islam Negeri Walisongo Semarang, Indonesia
Panji Nursetia Darma  -  Department of Civil Construction and Environmental Engineering, North Carolina State University, North Carolina, United States
Received: 23 May 2025; Revised: 4 Aug 2025; Accepted: 11 Aug 2025; Available online: 27 Nov 2025; Published: 27 Nov 2025.

Citation Format:
Abstract

Stroke is a major neurological disorder requiring rapid and accurate diagnosis for effective treatment. Computerized Tomography (CT) scanning provides detailed brain imaging but requires expert interpretation. This study aims to develop an automated classification system to distinguish between normal and stroke-affected brain CT scan images using texture feature analysis, providing enhanced accuracy and robustness compared to existing single-feature approaches. A total of 200 CT scan images (100 normal, 100 stroke cases) from the Kaggle database were analyzed. Texture features were extracted using Histogram, Gray Level Co-occurrence Matrix (GLCM), and Gray Level Run Length Matrix (GLRLM) analysis. The KNN algorithm was evaluated using percentage split validation, with the training set ranging from 50% to 70% of the data. The KNN classifier achieved optimal performance with 93% accuracy, 91% precision, and 96% recall using a 50% training set, demonstrating its potential as a diagnostic support tool for healthcare professionals to facilitate faster diagnosis and treatment decisions. The integration of multiple texture analysis methods showed superior performance compared to individual feature extraction techniques. Histogram features contributed significantly to classification accuracy by enhancing the detection of tissue heterogeneity. Texture analysis revealed significant differences between normal and stroke images in entropy, contrast, and correlation parameters. The proposed method successfully classifies CT scan images of normal and stroke-affected brains with high accuracy, demonstrating potential for clinical implementation in automated stroke screening and diagnostic support.

Fulltext View|Download
Keywords: Stroke; CT Scan; Texture Classification; GLCM; GLRLM; KNN

Article Metrics:

  1. D. Cahyanti, A. Rahmayani, and S. A. Husniar, "Analisis Performa Metode Knn pada Dataset Pasien Pengidap Kanker Payudara" Indones. J. Data Sci., 1(2), 39–43, (2020)
  2. I. A. Wisky and Sumijan, "Deteksi Tepi untuk Mendeteksi Kondisi Otak Menggunakan Metode Prewitt" J. Teknol., 12(2), 34–39, (2022)
  3. P. Budianto, D. K. Mirawati, H. R. Prabaningtyas, S. E. Putra, F. Muhammad, and M. Hafizhan, Stroke Iskemik Akut Dasar dan Klinis Surakarta, (2021)
  4. K. Anam, A. R. Chaidir, and F. Isman, "Hand Motion Strength Forecasting using Extreme Learning Machine for Post-Stroke Rehabilitation" J. Teknol. dan Sist. Komput., 9(2), 70–76, (2021)
  5. Y. Oktarina, N. Nurhusna, K. Kamariyah, and S. Mulyani, "Edukasi Kesehatan Penyakit Stroke pada Lansia" Med. Dedication J. Pengabdi. Kpd. Masy. FKIK UNJA, 3(2), 106–109, (2021)
  6. Sumijan, P. A. W. Purnama, and S. Arlis, "Peningkatan Kualitas Citra CT-Scan dengan Penggabungan Metode Filter Gaussian dan Filter Median" J. Teknol. Inf. dan Ilmu Komput., 6(6), 591–600, (2019)
  7. I. Rizky, N. P. R. Jeniyanthi, and C. I. A. Widiastuti, "Prosedur Pemeriksaan CT Scan Kepala dengan Klinis Stroke Hemorrhagic di RS Bhayangkara Makassar" J. Educ. Innov. Public Heal., 2(1), 101–106, (2024)
  8. Sukatin, Nurkhalipah, A. Kurnia, D. Ramadani, and Fatimah, "Pengaruh Variasi Rekonstruksi Slice Thickness dan Filter Kernel Terhadap Kualitas Citra CT-Scan Kepala pada Kasus Stroke Iskemik" J. Ilm. Multi Disiplin Indones., 1(9), 1278–1285, (2022)
  9. I. W. A. W. Kusuma and A. Kusumadewi, "Penerapan Metode Contrast Stretching, Histogram Equalization dan Adaptive Histogram Equalization untuk Meningkatkan Kualitas Citra Medis MRI" Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., 11(1), 1–10, (2020)
  10. C. Huang and C. Chen, "Texture Analysis Based on Gray Level Co-occurrence Matrix for CT Images: A Review" Multimed. Tools Appl., (2020)
  11. J. Sofian and R. H. Laluma, "Klasifikasi Hasil Citra Mri Otak Untuk Memprediksi Jenis Tumor Otak dengan Metode Image Threshold dan GLCM menggunakan Algoritma k-NN (Nearest Neighbor) Classifier Berbasis Web" Infotronik, 4(2), 51–56, (2019)
  12. N. Nafisah, R. I. Adam, and C. Carudin, "Klasifikasi K-NN dalam Identifikasi Penyakit COVID-19 Menggunakan Ekstraksi Fitur GLCM" J. Appl. Informatics Comput., 5(2), 128–132, (2021)
  13. N. Sakinah, T. Badriyah, and I. Syarif, "Analisis Kinerja Algoritma Mesin Pembelajaran Untuk Klasifikasi Penyakit Stroke Menggunakan Citra CT Scan" J. Teknol. Inf. dan Ilmu Komput., 7(4), (2020)
  14. B. Agustina and A. R. Isnain, "Penerapan Deep Learning pada Sistem Klasifikasi Tumor Otak Berbasis Citra CT Scan" Indones. J. Comput. Sci., 13(3), 4557–4565, (2024)
  15. M. A. Lutfia, F. X. A. Setyawan, S. Alam, T. Yulianti, and H. Fitriawan, "Implementasi Ekstraksi Fitur Menggunakan Gray Level Co-Occurrence Matrices (GLCM) dan K-Nearest Neighbor (K-NN) Untuk Klasifikasi Jenis Kain Dasar" in Seminar Nasional Teknik Elektro, 3–8, (2023)
  16. R. Krisdiyanto and H. Sumarti, "Classification of Mammographic Image Based on Texture Features with Random Forest Method for Identification of Breast Tumors" J. Holist. Med. Technol., 1(1), 1–9, (2024)
  17. J. F. Azzahra, H. Sumarti, and H. H. Kusuma, "Klasifikasi Kasus COVID-19 dan SARS Berbasis Ciri Tekstur Menggunakan Metode Multi-Layer Perceptron" J. Fis., 12(1), 16–27, (2022)
  18. J. Lin and H. Irsyad, "Klasifikasi Pneumonia Pada Citra X-Rays Paru-Paru Menggunakan GLCM Dan LVQ" J. Algoritm., 1(2), 184–194, (2021)
  19. S. Bulle, R. Nanmaran, T. Sathish, and R. Arulvel, "Analyzing the Effect of Feature Extraction Using GLRLM Method in Comparison with SIFT Method on ANN Based Cancer Classification Model" in AIP Conf. Proc., 2853(1), (2024)
  20. J. Vymazal, A. M. Rulseh, J. Keller, and L. Janouskova, "Comparison of CT and MR Imaging in Ischemic Stroke" Insights Imaging, 3(6), 619–627, (2012)
  21. N. Jannata, F. Yanto, L. Handayani, and E. P. C. Kurnia, "Pengaruh Contrast Limited Adaptive Histogram Equlization dalam Klasifikasi CT-Scan Tumor Ginjal menggunakan Deep Learning" INOVTEK Polbeng - Seri Inform., 9(1), 420–433, (2024)
  22. F. Risal, E. Setyawan, and L. R. Rere, "Convolutional Neural Network Untuk Deteksi Covid-19 Melalui Citra Chest X-Ray" in Prosiding Seminar SeNTIK, 5(1), (2021)
  23. A. P. Sidik, Hermansyah, and D. Aulia, "Rancangan Sistem Pengelompokkan Buah Berdasarkan Kadar Vitamin Menggunakan Metode K-Medoids" Perlindungan Huk. Terhadap Sertifikasi Haalal Dengan Model Self Declar., 4, 125–133, (2023)
  24. M. Bansal, A. Goyal, and A. Choudhary, "A Comparative Analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory Algorithms in Machine Learning" Decis. Anal. J., 3, 100071, (2022)

Last update:

No citation recorded.

Last update:

No citation recorded.