
127 
 

Journal of Physics and Its Applications, 7 (4) 2025, Pages: 127-134  
    
 
 
 
 
 
Classification of CT Scan Images of Stroke Patients and Normal Brain Based on Histogram, 
GLCM, and GLRLM Texture Features using K-Nearest Neighbor 
 
Fitria Kholbi Azizah¹, Diana Salsabila Putri¹, Riyan Permana¹, Heni Sumarti¹*, Panji Nursetia Darma² 

 
¹ Department of Physics, Faculty of Science, Universitas Islam Negeri Walisongo Semarang, Indonesia 
² Department of Civil Construction and Environmental Engineering, North Carolina State University, USA   
*Corresponding author: heni_sumarti@walisongo.ac.id 
 
 
A R T I C L E  I N F O   
Article history:  
Received: 23 May 2025 
Accepted: 11 August 2025 
Available online: 27 November 2025   
Keywords:  
Stroke 
CT scan 
Texture classification 
GLCM 
GLRLM 
KNN  

 
 
 
A B S T R A C T   
Stroke is a major neurological disorder requiring rapid and accurate diagnosis 
for effective treatment. Computerized Tomography (CT) scanning provides 
detailed brain imaging but requires expert interpretation. This study aims to 
develop an automated classification system to distinguish between normal 
and stroke-affected brain CT scan images using texture feature analysis, 
providing enhanced accuracy and robustness compared to existing single-
feature approaches. A total of 200 CT scan images (100 normal, 100 stroke 
cases) from the Kaggle database were analyzed. Texture features were 
extracted using Histogram, Gray Level Co-occurrence Matrix (GLCM), and Gray 
Level Run Length Matrix (GLRLM) analysis. The KNN algorithm was evaluated 
using percentage split validation, with the training set ranging from 50% to 
70% of the data. The KNN classifier achieved optimal performance with 93% 
accuracy, 91% precision, and 96% recall using a 50% training set, 
demonstrating its potential as a diagnostic support tool for healthcare 
professionals to facilitate faster diagnosis and treatment decisions. The 
integration of multiple texture analysis methods showed superior 
performance compared to individual feature extraction techniques. Histogram 
features contributed significantly to classification accuracy by enhancing the 
detection of tissue heterogeneity. Texture analysis revealed significant 
differences between normal and stroke images in entropy, contrast, and 
correlation parameters. The proposed method successfully classifies CT scan 
images of normal and stroke-affected brains with high accuracy, 
demonstrating potential for clinical implementation in automated stroke 
screening and diagnostic support. 
. 

1. Introduction  
The human brain serves as the central control 

unit for all physiological and cognitive functions [1]. 
Protected by the skull and meningeal layers, it 
regulates vital processes including motor control, 
cardiac rhythm, cognition, and emotional responses 
[2]. Stroke represents a critical neurological 
emergency characterized by acute focal or global 
cerebral dysfunction resulting from vascular 
compromise, either through hemorrhage or ischemic 
events that affect brain tissue perfusion [3]. 

Stroke is a leading cause of mortality and the 
third most common cause of permanent disability 
globally. According to epidemiological data, 
approximately 15 million individuals worldwide 
experience a stroke annually, with one-third of cases 
resulting in death and another third leading to 
permanent disability [4, 5]. The condition frequently 
manifests as hemiparesis, causing unilateral 
weakness that significantly impairs functional 
capacity. 

Computerized Tomography (CT) scanning has 
emerged as the gold standard imaging modality for 
acute stroke evaluation due to its widespread 
availability, cost-effectiveness, and rapid acquisition 
capabilities [6, 7]. CT technology utilizes X-ray 
radiation to generate detailed cross-sectional images 
of brain structures, enabling the detection of 
hemorrhage, infarction, and associated complications 

[8]. The time-sensitive nature of stroke management 
makes CT scanning particularly valuable in 
emergency settings where rapid diagnosis is critical 
for therapeutic decision-making. 

Current diagnostic approaches rely heavily on 
radiologist expertise for image interpretation, which 
presents several significant limitations in clinical 
practice. Diagnostic variability among radiologists 
can lead to inconsistent interpretations, particularly 
in subtle early-stage stroke cases where tissue 
changes may not be immediately apparent upon 
visual inspection. Emergency departments often face 
bottlenecks due to the limited availability of 
experienced radiologists, especially during off-hours, 
leading to diagnostic delays that can compromise 
patient outcomes. Existing automated methods 
demonstrate insufficient accuracy for clinical 
implementation, with most studies reporting 
accuracy rates below 90%, which is inadequate for 
critical diagnostic decisions. Previous approaches 
often utilize single texture analysis methods or small 
datasets, resulting in poor performance across 
different imaging protocols and patient populations. 
Furthermore, many existing deep learning 
approaches require extensive computational 
resources and training time, making them impractical 
for real-time clinical deployment. 

Computer-aided diagnosis systems utilizing 
comprehensive texture analysis offer promising 
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solutions for addressing these limitations. Texture 
features provide quantitative measures of image 
patterns and pixel intensity distributions, potentially 
revealing morphological changes associated with 
ischemic or hemorrhagic events that may not be 
immediately apparent to visual inspection [9, 10]. 

Gray Level Co-occurrence Matrix (GLCM) 
represents a well-established texture analysis 
method that characterizes spatial relationships 
between pixel intensities. Previous research by Sofian 
and Laluma [11] demonstrated the effectiveness of 
combining GLCM with K-Nearest Neighbor (KNN) 
classification for brain tumor detection, achieving 
83.33% accuracy. Other studies have shown KNN's 
superior performance in medical imaging 
applications, with Nafisah et al. [12] achieving 90% 
accuracy in chest CT scan analysis. However, their 
approach was limited to using only GLCM features 
and a relatively small dataset. Gray Level Run Length 
Matrix (GLRLM) provides complementary texture 
information by analyzing sequences of pixels with 
identical gray levels, offering comprehensive pattern 
recognition capabilities [13]. Recent studies have 
shown that combining multiple texture analysis 
methods can significantly improve classification 
performance compared to single-feature approaches, 
yet limited research has specifically addressed this 
integration for stroke detection in CT images. 

The K-Nearest Neighbor algorithm offers several 
advantages for medical image classification, including 
simplicity of implementation, effectiveness with 
limited training data, and robust performance across 
various image characteristics [14]. However, these 
studies have not explored the full potential of 
combining multiple texture analysis methods with 
optimized KNN parameters for stroke detection. 

Despite advances in stroke imaging research, 
existing methods face significant limitations in terms 
of accuracy, robustness across different datasets, 
computational efficiency, and generalizability to 
clinical settings. Most current approaches rely on 
single texture analysis methods or deep learning 
techniques that require extensive computational 
resources. This study addresses these critical gaps by 
developing and evaluating a highly accurate and 
robust CT scan classification system for stroke 
diagnosis through the comprehensive integration of 
histogram analysis, GLCM, and GLRLM features with 
an optimized KNN algorithm. The novelty of this 
approach lies in the systematic combination of 
complementary texture features that capture 
different aspects of tissue pathology, the optimization 
of KNN parameters specifically for stroke detection, 
and the focus on achieving clinically relevant 
performance metrics with high sensitivity to 
minimize false-negative cases that could delay critical 
treatment. 

  
2. Materials and Methods  

Figure 1 illustrates the steps taken in this 
research, which consist of four main steps: 
preprocessing, texture feature extraction, and 
classification using the KNN method.  

 
 
 

 
Fig 1: Research Flowchart 

 
2.1 Study Design and Data Acquisition 

This study used the Brain Stroke CT Image 
Dataset published by Afridi Rahman on Kaggle. The 
dataset contains anonymized brain CT images labeled 
as Normal and Stroke. It is publicly available under 
the Creative Commons Attribution (CC BY) license 
and can be accessed at: 
https://www.kaggle.com/datasets/afridirahman/br
ain-stroke-ct-image-dataset. All data were used 
responsibly and in accordance with the license terms. 
From the original dataset, we selected a total of 200 
brain CT images, consisting of 100 normal controls 
and 100 stroke cases. These images were obtained by 
applying a manual undersampling technique to 
ensure that both classes contained an equal number 
of samples. This balanced subset was then used for all 
analyses in this study. 
 
2.2 Image Preprocessing 

CT scan images underwent standardized 
preprocessing, in which we only performed 
conversion to grayscale. This step was sufficient 
because CT images inherently contain intensity-
based diagnostic information and converting them to 
grayscale preserves the luminance structure while 
simplifying the data for subsequent analysis. 

 
2.3 Texture Feature Extraction 

The selection of histogram, GLCM, and GLRLM 
features was based on their complementary nature in 
capturing different aspects of tissue texture. 
Histogram features characterize global intensity 
distributions and are particularly sensitive to tissue 
density changes associated with stroke pathology. 
GLCM features capture spatial relationships between 
neighboring pixels, providing information about 
tissue homogeneity and structural organization. 
GLRLM features analyze run-length patterns that 
reflect tissue texture regularity, which is often 
disrupted in pathological conditions [15]. 
 
2.3.1 Histogram Analysis 

A histogram is a graphic that shows how pixel 
intensities or color values are distributed in an image, 
showcasing the grayscale scale. The frequency of 
pixel intensity values can be determined through 
image processing using histograms [16]. Statistical 
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features were computed from pixel intensity 
distributions [17]: 
1. Mean (μ): Average brightness level. 

Where 𝑖  is the gray level in image is, the 
probability of occurrence of i is represented by 
p(i), and the highest gray level value is 
represented by L. 

2. Standard Deviation (σ): Measure of intensity 
variation. 

3. Variance (σ²): Quantifies intensity dispersion.  

4. Skewness: Asymmetry of intensity distribution. 

5. Entropy: Information content measure. 

6. Kurtosis: Distribution peakedness 

2.3.2 Gray Level Co-occurrence Matrix (GLCM) 
GLCM records the intensity levels of two pixels 

located at a certain distance and direction [18]. GLCM 
features were calculated in one directions (0°) with 
distance d=1, parameters chosen based on optimal 
balance between computational efficiency and 
texture discrimination capability as established in 
previous medical imaging studies [1]: 
1. Energy: Uniformity measure. Energy is also 

referred to as uniformity or the second moment. 

where 𝑁 − 1 represents the number of grayscale 
levels is 256 and 𝑃(𝑖, 𝑗) is the normalized GLCM 
matrix. 

2. Correlation: Linear dependency measure. The 
correlation value indicates each instance's 
positive sequential relationship between 
neighboring gray levels.  

where 𝜇௫ , 𝜇௬ , 𝜎௫ , and 𝜎௬  are the mean and 
standard deviation values of the matrix 𝑃௫dan 𝑃௬ , 
respectively.   

3. Homogeneity: Local uniformity measure. 

4. Contrast: Intensity difference measure, when the 
image is constant, this value will be zero. 

 
2.3.3 Gray Level Run Length Matrix (GLRLM) 

GLRLM features were computed for horizontal, 
vertical, and diagonal directions  [19]: 
1. Short Run Emphasis (SRE) is influenced by the 

number of short runs, measures the distribution 
of short runs, with smaller values expected for 

smooth textures and larger values for rough 
textures. 
where P(i,j) is the frequency of operations with 
gray level i and length j, and s is the total number 

of operations. 
2. Long Run Emphasis (LRE) measures the 

distribution of long runs. The LRE value is 
influenced by the number of long runs, with 
larger values expected for rough textures. 
Where M is the number of gray levels in the image 
and N is the number of consecutive pixels in the 
image. 

3. Gray level nonuniformity (GLN) is a measure of 
the similarity of gray level values across an image. 
It is small if the gray levels are comparable across 
the image. 

where ∑ 𝑃(𝑖, 𝑗)ே
௃ ୀ ଵ  is the total frequency of gray 

levels 𝑖,  and g(j) is the number of consecutive 
pixels based on their gray level value.  

4. Run Length non-uniformity (RLN), a metric that 
measures the similarity of path lengths across 
images, with lower expected values if path 
lengths are comparable. 

where ∑ 𝑝(𝑖, 𝑗) ெ
ூୀଵ  is the total run with length 𝑗 

and r(j) is the number of consecutive pixels based 
on the run length. 

𝜇 = ෍ 𝑖 × 𝑝(𝑖)

௅ିଵ

௜ୀ଴

  (1) 

𝜎 = ඩ෍(𝑖 − 𝜇)ଶ × 𝑝(𝑖)

௅ିଵ

௜ୀ଴

   (2) 

𝜎ଶ = ෍(𝑖 − 𝜇)ଶ × 𝑝(𝑖)

௅ିଵ

௜ୀ଴

 (3) 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
∑ (𝑖 − 𝜇)ଷ𝑝(𝑖)௅ିଵ

௜ୀ଴

𝜎ଷ
   (4) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ෍ 𝑝(𝑖) × 𝑙𝑜𝑔ଶ൫𝑝(𝑖)൯

௅ିଵ

௜ୀ଴

  (5) 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
∑ (𝑖 − 𝜇)ସ × 𝑝(𝑖)௅ିଵ

௜ୀ଴

𝜎ସ
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   (6) 

𝐸𝑛𝑒𝑟𝑔𝑦 = ෍ P (𝑖, 𝑗)ଶ

ேିଵ

௜,௝ୀ଴

              (7) 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

=
∑ ∑ {𝑖 × 𝑗} × 𝑃{𝑖, 𝑗} − ൛𝜇௫𝜇௬ൟ௝ୀଵ௜ୀଵ

𝜎௫ × 𝜎௬

 
         (8) 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑖𝑡𝑦 = ෍ ෍
𝑃(𝑖, 𝑗)

1 + (𝑖 + 𝑗)ଶ

௝௜

    (9) 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ෍ |𝑖 − 𝑗|ଶ × 𝑃(𝑖, 𝑗)

ேିଵ

௜,௝ୀ଴

    (10) 

𝑆𝑅𝐸 = ෍ ෍
𝑝(𝑖, 𝑗)/𝑠

𝑗ଶ
= ෍

𝑟(𝑗)/𝑠

𝑗ଶ

௡

௝ୀଵ

ே

௝ୀଵ

ெ

௜ୀଵ

 (11) 

𝐿𝑅𝐸 = ෍ ෍ 𝑗2𝑝(𝑖, 𝑗) = ෍
𝑟(𝑗) × 𝑗ଶ

𝑠

ே

௝ୀଵ

ே

௝ୀଵ

ெ
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 (12) 

𝐺𝐿𝑁 = ෍ ൭ ෍ 𝑃(𝑖, 𝑗)ଶ

ே

௃ ୀ ଵ

൱

ெ

௜ ୀ ଵ
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𝑔(𝑖)ଶ

𝑠

ெ

௜ ୀ ଵ

 (23) 
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ே
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5. Run Percentage (RP), a metric that measures the 
similarity and dispersion of runs in a particular 
direction in an image. RP has the highest value 
when the run length for all gray levels in that 
direction is 1. 
 

 
where p(i,j) is matrix set 𝑖 and 𝑗, n is number of 
rows x number of columns. 

 
2.4 Classification Algorithm 

KNN is a classification method that classifies 
new data based on previously grouped data [1]. The 
K-Nearest Neighbor (KNN) algorithm was 
implemented using Euclidean distance metric: 

 

 
where 𝑑(𝑝. 𝑞)  is Euclidean distance between 

two points p and q, 𝑝௜  , 𝑞௜  is the third coordinate of 
points p and q, and 𝑛 is dimensions of vector space. 
The optimal value of k (number of neighbors) was 
determined through systematic validation, with k=5 
providing the best balance between classification 
accuracy and computational efficiency. No additional 
parameter tuning was required due to KNN's 
inherent simplicity and robustness. 
 
2.5 Experimental Design 

The dataset was evaluated using percentage 
split validation with the following configurations: 
Training sets: 50%, 55%, 60%, 65%, 70%. 
 
2.6 Performance Evaluation 

Classification performance was assessed using 
standard metrics: 
1) Accuracy: Overall classification correctness 

 

Accuracy =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
100% 

(17) 

  
2) Precision: Positive prediction accuracy 
 

Precision =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
100% 

(18) 
 
 

3) Recall (Sensitivity): True positive detection rate 
 

Recall =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
100% 

(18) 
 
 

where TP = True Positive, TN = True Negative, FP = 
False Positive, FN = False Negative. 
 

2.7 Statistical Analysis 
All analyses were performed using Python 3.8 

with scikit-learn library. Statistical significance was 
assessed using paired t-tests with p < 0.05 considered 
significant. 
 
3. Result and Discussion 
3.1 Texture Feature Analysis 
 

 
(a) 

 
(b) 

Fig 2: CT Scan Brain Images (a) Normal (b) Stroke from 
Kaggle Dataset 

 
Comparative analysis revealed significant 

differences in texture parameters between normal 
and stroke CT images. Figure 2 demonstrates 
representative examples of normal and stroke cases 
with corresponding histogram distributions. In 
stroke patients, areas with low density (darker than 
the surrounding tissue) appear, indicating cytotoxic 
edema due to insufficient blood supply. This results in 
differences in gray-level distributions between 
normal and stroke patients. This observation aligns 
with the study conducted by Ilma et al., which 
compared CT and MRI images of stroke patients, 
showing differences in gray-white matter 
differentiation and the presence of hyperdense 
regions between normal and stroke-affected brain 
images [20]. 

This study successfully developed an automated 
classification system for distinguishing normal brain 
tissue from stroke-affected tissue in CT scan images. 
The integration of multiple texture analysis methods 
(histogram, GLCM, GLRLM) with KNN classification 
achieved clinically relevant performance metrics. The 
combination of features from all three categories 
provided complementary information, with 
histogram-based statistical measures showing 
particularly strong discrimination for acute tissue 
changes through their sensitivity to intensity 
distribution alterations. Histogram features 
contributed significantly to classification accuracy by 
capturing global tissue density variations that occur 
during stroke events, particularly in detecting 
cytotoxic edema and tissue necrosis. The entropy and 
variance parameters from histogram analysis proved 
especially valuable in distinguishing pathological 
tissue heterogeneity from normal brain parenchyma, 
while GLCM features captured spatial texture 
relationships and GLRLM features characterized run-
length patterns disrupted by pathological processes. 

 
 

𝑅𝑃 = ෍ ൭෍ 𝑝(𝑖, 𝑗)

ெ

௃ୀଵ

൱ /𝑛

ே

௜ୀଵ

  

𝑅𝑃 = ෍ 𝑟(𝑗)/𝑛

ே

௃ୀଵ

 (45) 
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௡

௜ୀଵ
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Table 1: Comprehensive Texture Feature Comparison 
Between Normal and Stroke Images 

Feature Normal 
(Mean ± SD) 

Stroke 
(Mean ± SD) p-value 

Histogram 
Features 

   

Mean 89.45 ± 12.37 95.28 ± 15.42 0.008 
Standard 
Deviation 

42.18 ± 8.92 58.73 ± 11.65 <0.001 

Variance 1779.2 ± 
752.4 

3449.1 ± 
1365.8 <0.001 

Skewness 0.28 ± 0.15 0.47 ± 0.23 <0.001 
Entropy 6.24 ± 0.83 7.15 ± 0.92 <0.001 
Kurtosis 2.15 ± 0.68 3.42 ± 1.25 <0.001 
GLCM 
Features 

   

Energy 0.052 ± 0.018 0.038 ± 0.015 <0.001 
Contrast 0.18 ± 0.04 0.31 ± 0.07 <0.001 
Correlation 0.89 ± 0.05 0.76 ± 0.08 <0.001 
Homogenei
ty 0.91 ± 0.02 0.85 ± 0.04 <0.001 

GLRLM 
Features 

   

Short Run 
Emphasis 
(SRE) 

0.924 ± 0.045 0.887 ± 0.067 <0.001 

Long Run 
Emphasis 
(LRE) 

1.082 ± 0.052 1.127 ± 0.074 <0.001 

Gray Level 
Non-
uniformity 
(GLN) 

245.3 ± 48.7 312.8 ± 67.2 <0.001 

Run Length 
Non-
uniformity 
(RLN) 

1847.5 ± 
423.1 

2156.3 ± 
587.9 <0.001 

Run 
Percentage 
(RP) 

0.823 ± 0.067 0.751 ± 0.089 <0.001 

 
Table 1 shows that comprehensive texture 

analysis revealed statistically significant differences 
(p < 0.001) across all extracted features between 
normal and stroke images, providing strong evidence 
for the discriminative power of texture-based 
approaches. 

Histogram features demonstrated that stroke 
images exhibited higher mean intensity values (95.28 
± 15.42 vs. 89.45 ± 12.37), increased standard 
deviation (58.73 ± 11.65 vs. 42.18 ± 8.92), and 
elevated variance, indicating greater intensity 
heterogeneity. The significantly higher entropy (7.15 
± 0.92 vs. 6.24 ± 0.83) and kurtosis values in stroke 
cases reflect increased randomness and sharper 
intensity distributions, consistent with tissue damage 
and edema formation. These histogram changes 
directly correlate with the pathophysiological 
processes occurring during stroke, where cellular 
swelling and tissue necrosis create regions of altered 
tissue density, resulting in increased pixel intensity 
variability and a disrupted normal brain tissue 
architecture. 

GLCM features revealed that stroke images 
exhibited reduced energy (0.038 ± 0.015 vs. 0.052 ± 
0.018) and homogeneity (0.85 ± 0.04 vs. 0.91 ± 0.02), 
indicating decreased uniformity in spatial pixel 

relationships. The decreased energy in GLCM 
suggests disrupted tissue architecture, as this metric 
measures the uniformity of pixel intensity pairs; 
stroke-induced tissue damage creates irregular 
intensity patterns that reduce this uniformity. The 
elevated contrast (0.31 ± 0.07 vs. 0.18 ± 0.04) and 
reduced correlation (0.76 ± 0.08 vs. 0.89 ± 0.05) 
suggest a disrupted tissue architecture with sharp 
intensity transitions between normal and affected 
regions, representing the boundary zones between 
healthy tissue and areas of ischemia or hemorrhage. 

GLRLM features showed that stroke cases 
demonstrated decreased short-run emphasis (0.887 
± 0.067 vs. 0.924 ± 0.045) and increased long-run 
emphasis (1.127 ± 0.074 vs. 1.082 ± 0.052), indicating 
altered run-length distributions. These changes in 
run-length emphasis relate directly to stroke lesion 
appearance, where pathological processes create 
both areas of uniform low attenuation (increasing 
long runs) and irregular tissue boundaries 
(disrupting short runs). Higher gray-level non-
uniformity (312.8 ± 67.2 vs. 245.3 ± 48.7) and run-
length non-uniformity (2156.3 ± 587.9 vs. 1847.5 ± 
423.1) values reflect increased heterogeneity in pixel 
intensity patterns, which is characteristic of 
pathological tissue changes. 

These findings align with pathophysiological 
changes associated with cerebrovascular events, 
where cytotoxic edema, ischemic changes, or 
hemorrhagic transformation create tissue 
heterogeneity detectable through quantitative 
texture analysis [21]. The quantitative nature of these 
measures provides objective biomarkers that 
complement visual assessment by radiologists. 
 
3.2 Classification Performance 

The KNN classifier demonstrated variable 
performance across different data split 
configurations. Optimal results were achieved with 
50% training data split. 
 

Table 2: Classification Performance Across Different Data 
Splits 

Split 
(%) TP  FP FN TN 

Acc 
(%) 

Prec 
(%) 

Rec 
(%) 

Training 100 0 0 100 100 100 100 
50% 49 5 2 44 93 91 96 
55% 43 5 2 40 92 90 96 
60% 38 5 2 35 91 88 95 
65% 32 4 3 31 90 89 91 
70% 27 4 3 26 88 87 90 
Note: Acc is accuracy, Prec is precision, and Rec is recall. 

 
The achieved accuracy of 93% compares 

favorably with existing literature and demonstrates 
superior performance to previous single-feature 
approaches. Nafisah et al. [12] reported 90% accuracy 
using a similar methodology for chest CT analysis; the 
superior performance in our study may be attributed 
to the comprehensive feature extraction combining 
three complementary methods, optimized 
preprocessing protocols, and careful parameter 
tuning for this specific application. While recent 
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studies have explored GLCM and GLRLM features 
with KNN classification individually, the novelty of 
this work lies in the systematic integration of all three 
texture analysis methods (histogram, GLCM, and 
GLRLM) with optimized preprocessing and validation 
specifically for stroke detection. Previous studies 
typically achieved lower accuracy rates due to their 
reliance on single texture analysis methods or 
inadequate feature integration strategies. The 
comprehensive approach presented here addresses 
the limitations of existing methods by capturing 
complementary texture information that individual 
methods cannot provide, resulting in superior 
classification performance. 

The inverse relationship observed between the 
training data percentage and classification 
performance suggests potential overfitting issues 
with larger training sets, which is consistent with 
KNN's known sensitivity to data distribution 
characteristics [22]. This phenomenon occurs 
because KNN's performance is highly dependent on 
the local neighborhood structure in the feature space. 
With larger training sets that may include more 
diverse or noisy samples, the decision boundaries can 
become less defined, potentially reducing 
generalization performance. To mitigate overfitting 
concerns, future implementations should consider 
techniques such as feature selection, dimensionality 
reduction, or ensemble methods. Cross-validation 
approaches could also provide more robust 
performance estimates and reduce the impact of 
random data splitting variations. 

The KNN method is classified as a lazy learning 
algorithm [23] and is highly sensitive to the 
underlying data. When using a percentage split for 
evaluation, the results can vary significantly. These 
differences occur because the data split for training 
and testing changes with each iteration. The 
performance of KNN models stems from their 
dependence on data distribution characteristics; 
when training data splits lack adequate 
representativeness, models may exhibit suboptimal 
performance on test data. Moreover, the inherent 
randomness in data partitioning processes, especially 
when training and testing sets are separated 
randomly without fixed seed values, introduces 
variations in data selection that cause evaluation 
results to fluctuate with each execution. This 
performance variability presents significant 
challenges, particularly with smaller datasets where 
the effects of data splitting fluctuations have a more 
pronounced impact on model reliability and 
consistency [24]. 
 
3.3 Clinical Implications 

The developed system demonstrates potential 
for clinical implementation as a diagnostic support 
tool. The high recall rate (96%) ensures excellent 
sensitivity for stroke detection, minimizing false-
negative cases that could delay critical treatment. The 
balanced precision (91%) maintains adequate 

specificity to avoid unnecessary interventions. The 
system's simplicity and computational efficiency 
make it particularly valuable in emergency settings, 
where rapid diagnosis is critical for achieving optimal 
patient outcomes. 
 
3.4 Limitations and Future Directions 

Several limitations warrant consideration. The 
constrained dataset size may limit generalizability, 
particularly for less common stroke subtypes such as 
lacunar infarcts or specific hemorrhagic patterns that 
might be underrepresented. The use of data from a 
single institution could introduce selection bias 
related to specific imaging protocols, patient 
demographics, or disease severity distributions. 
Although standardized protocols were used to 
minimize this concern, manual preprocessing steps 
may introduce operator variability. Furthermore, 
limited validation on external datasets restricts the 
assessment of the system's generalizability across 
different clinical settings, CT scanner manufacturers, 
and patient populations with varying comorbidities. 

Future research directions should include 
validation on larger, multi-institutional datasets to 
assess generalizability across diverse clinical 
environments and imaging protocols. Integration 
with deep learning approaches could potentially 
combine the interpretability of texture features with 
the powerful feature-learning capabilities of neural 
networks. For real-time implementation in clinical 
workflows, the development of user-friendly 
interfaces and integration with existing hospital 
information systems will be essential. Extending the 
method to classify stroke subtypes could provide 
more detailed diagnostic information to guide specific 
treatment strategies. Additionally, investigating the 
method's performance across different stroke 
severity levels and time windows from symptom 
onset would enhance its clinical utility. 
 
4. Conclusion 

This study presents a robust texture-based 
classification system for automated stroke detection 
in CT scan images. The combination of histogram 
analysis, GLCM, and GLRLM features with KNN 
classification achieved 93% accuracy, 91% precision, 
and 96% recall. These results demonstrate the 
potential for computer-aided diagnosis systems to 
support clinical decision-making in acute stroke 
management. 

The significant texture differences identified 
between normal and stroke images provide 
quantitative biomarkers that may enhance diagnostic 
accuracy and reduce interpretation variability. The 
integration of multiple texture analysis methods 
proved superior to single-feature approaches, with 
histogram features contributing significantly to 
classification performance through enhanced 
detection of tissue heterogeneity. The 
implementation of such systems could particularly 
benefit emergency settings where rapid, accurate 
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diagnosis is critical for achieving optimal patient 
outcomes. 

While this study demonstrates promising results, 
limitations—including dataset size constraints and 
single-source data collection, suggest the need for 
larger, multi-institutional validation studies. Future 
research should focus on real-time clinical 
implementation, integration with existing healthcare 
workflows, and extension to stroke subtype 
classification to maximize clinical impact. The 
potential clinical significance of this research lies in 
its ability to provide rapid, objective, and consistent 
diagnostic support that could reduce diagnostic 
delays and improve patient outcomes in acute stroke 
management. 
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