skip to main content

Numerical Analysis of the Doppler Effect in Circular Motion with Modulated Angular Velocity Using Python

Radha Firaina orcid  -  Master of Physics Education, Universitas Ahmad Dahlan; Jl. Pramuka No 42, Umbulharjo, Yogyakarta, Indonesia
*Yudhiakto Pramudya orcid scopus  -  Master of Physics Education, Universitas Ahmad Dahlan; Jl. Pramuka No 42, Umbulharjo, Yogyakarta, Indonesia
Received: 12 Apr 2025; Revised: 1 Nov 2025; Accepted: 2 Nov 2025; Available online: 27 Nov 2025; Published: 27 Nov 2025.

Citation Format:
Abstract

This study presents a numerical simulation of the Doppler effect for an object in circular motion with time-modulated angular velocity, developed using the Python programming language. The model computes angular velocity, angular position, and observed frequency as functions of time based on a modified Doppler formulation. Two simulation models were implemented: an interactive mode using an IPython widget slider to vary the modulation constant (0 ≤ b ≤ 1), and a comparative mode evaluating three representative modulation strengths (b = 0.15, 0.20, 0.25). The results demonstrate that the modulation of angular velocity produces periodic fluctuations in the observed frequency, consistent with theoretical predictions. Sensitivity testing confirmed numerical stability (∆f < 0.01 Hz) with smaller time steps (∆t = 0.01 s), validating the robustness of the computational model. These findings quantitatively reveal the relationship between modulation parameters and Doppler frequency shifts, providing a reproducible and pedagogically effective framework for studying non-uniform circular motion and its physical implications in astrophysical and acoustic systems.

Fulltext View|Download
Keywords: Doppler Effect; Circular Motion; Modulated Angular Velocity; Numerical Analysis; Python Simulation

Article Metrics:

  1. D. Halliday, R. Resnick, and J. Walker, Physics 7th Extended Edition 7th ed. Erlangga, (2010)
  2. D. D. Nolte, "The Fall and Rise of The Doppler Effect" Phys. Today, 73, 30–35, (2020)
  3. D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics John Wiley & Sons, (2013)
  4. B. W. Carroll and D. A. Ostlie, An Introduction to Modern Astrophysics Cambridge University Press, (2017)
  5. NASA, "NASA Exoplanet Archive"
  6. M. Mayor and D. Queloz, "A Jupiter-Mass Companion to A Solar-Type Star" Nature, 378, 355–359, (1995)
  7. K. Médjahdi, "Radial Velocity of A Sound Source in Circular Motion for Illustrating The Detection of An Exoplanet" Am. J. Phys., 88, 814–818, (2020)
  8. H. Karttunen, P. Kröger, H. Oja, M. Poutanen, and K. J. Donner, "Exoplanets" in Fundamental Astronomy Springer Berlin Heidelberg, 459–462, (2017)
  9. S. B. Howell, "The Grand Challenges of Exoplanets" Front. Astron. Space Sci., 7, (2020)
  10. G. Saleh, M. J. Faraji, and D. R. Alizadeh, "A New Explanation for Redshift/Blueshift" in APS New England Sect. Fall Meet., C01-009, (2021)
  11. S. Klinaku, "The Doppler effect is the same for both optics and acoustics" Optik, 244, 167565, (2021)
  12. M. M. F. Saba and R. A. da S. Rosa, "The Doppler Effect of a Sound Source Moving in a Circle" Phys. Teach., 41, 89–91, (2003)
  13. A. Romero and M. E. Capoulat, Análisis Del Efecto Doppler Para Una Fuente En Movimiento Circular (2005)
  14. B. Khose, "Investigating the Doppler Effect when the Wave Source Moves in a Circular Path" J. Stud. Res., 11, (2022)
  15. W. McKinney, Python for Data Analysis O’Reilly Media, Inc., (2022)
  16. W. McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython O’Reilly Media, Inc., (2012)
  17. R. Johansson, Numerical Python: A Practical Techniques Approach for Industry Apress, (2015)
  18. A. Saravanos and M. X. Curinga, "Simulating the Software Development Lifecycle: The Waterfall Model" Appl. Syst. Innov., 6, 108, (2023)
  19. Y. Bassil, "A Simulation Model for the Waterfall Software Development Life Cycle" Int. J. Eng. Technol., 2, (2012)
  20. M. Ahyar, Y. Pramudya, and O. Okimustava, "Implementasi Sistem Pengolahan Data Sky Quality Meter Berbasis Visual Basic Untuk Analisis Perubahan Tingkat Kecerahan Langit" J. Kumparan Fis., 3, 239–246, (2020)

Last update:

No citation recorded.

Last update:

No citation recorded.