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A B S T R A C T   
This study presents a numerical simulation of the Doppler effect for an object 
in circular motion with time-modulated angular velocity, developed using the 
Python programming language. The model computes angular velocity, angular 
position, and observed frequency as functions of time based on a modified 
Doppler formulation. Two simulation models were implemented: an 
interactive mode using an IPython widget slider to vary the modulation 
constant (0 ≤ b ≤ 1), and a comparative mode evaluating three representative 
modulation strengths (b = 0.15, 0.20, 0.25). The results demonstrate that the 
modulation of angular velocity produces periodic fluctuations in the observed 
frequency, consistent with theoretical predictions. Sensitivity testing 
confirmed numerical stability (∆f < 0.01 Hz) with smaller time steps (∆t = 0.01 
s), validating the robustness of the computational model. These findings 
quantitatively reveal the relationship between modulation parameters and 
Doppler frequency shifts, providing a reproducible and pedagogically effective 
framework for studying non-uniform circular motion and its physical 
implications in astrophysical and acoustic systems. 
 

1. Introduction  
The Doppler effect is a cornerstone of modern 

physics and astrophysics, providing a fundamental 
means to measure motion through wave frequency 
shifts. It describes the change in frequency of waves 
perceived by an observer moving relative to the 
source. For instance, the shift in pitch of a siren from 
an approaching or receding emergency vehicle 
vividly illustrates this phenomenon [1]. Beyond daily 
experience, the Doppler effect underpins numerous 
scientific and technological applications, from 
observing blood flow in arteries and cooling atoms in 
laser traps to tracking the Earth’s motion through 
space and detecting distant exoplanets orbiting other 
stars [2]. 

Although the Doppler effect is typically 
introduced through linear motion, the movement of 
celestial bodies (such as planets and stars) generally 
follows elliptical orbits, as governed by Kepler's Laws 
[3,4]. Understanding frequency variations in such 
systems is essential, particularly since more than 
5,300 exoplanets have now been confirmed by NASA 
using diverse detection methods [5]. The first 
exoplanet, 51 Pegasi b, was discovered in 1995 by 
Michel Mayor and Didier Queloz using the radial 
velocity method, which directly applies the Doppler 
effect principle [6,7]. In this method, a star’s radial 
velocity oscillates periodically due to the 
gravitational interaction with its orbiting planet [8,9]. 
The resulting red and blue shifts in spectral lines 

reveal orbital motion and enable estimation of 
planetary mass and distance [10]. 

In realistic exoplanet systems, the angular 
velocity of the star-planet pair does not remain 
constant. Because planetary orbits are often elliptical, 
the star’s angular speed varies cyclically as the planet 
moves closer or farther in its orbit. These periodic 
changes produce modulated Doppler frequency shifts, 
a crucial factor in achieving precise radial-velocity 
measurements. However, many existing analyses 
simplify these orbits to circular motion for practical 
and pedagogical purposes. Laboratory experiments 
typically employ sound waves as analogs for starlight, 
exploiting their measurability and demonstrating 
that the mathematical form of the Doppler effect is 
equivalent for both acoustic and electromagnetic 
waves [11]. 

Previous studies formulated modified Doppler 
effect equations for circular motion and validated 
them through theoretical and experimental 
investigations [12]. Most of these works assumed 
constant tangential and angular velocity, often using 
a rotating buzzer to mimic a star’s uniform motion. 
The resulting equations were shown to agree with 
Christian Doppler’s original theory [13]. Subsequent 
experiments highlighted the influence of emitted 
frequency on the observed shift [7] and examined 
how variation in the radius of rotation affects 
frequency change [14]. 
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While these studies significantly advanced 
Doppler effect analysis in circular motion, no 
research has yet examined systems with time-
varying or modulated angular velocity. This gap 
limits the applicability of existing models to real 
astronomical and laboratory conditions, where 
angular velocity oscillates periodically. 

Accordingly, this study addresses the following 
research question: How does modulated angular 
velocity affect the observed frequency in circular 
motion, and what parameters influence these 
frequency variations? 

To answer this question, a Python-based 
numerical simulation was developed by applying the 
modified Doppler effect equation from previous 
studies [15,16]. Python was selected because of its 
powerful numerical and visualization libraries 
(NumPy, Matplotlib, and IPython widgets), which 
allow for both interactive and quantitative analysis. 
The simulation calculates angular velocity, angular 
position, and observed frequency as functions of time, 
and enables users to adjust the modulation constant 
(b) interactively to observe its effect on frequency 
variation. 

The Python-based simulation was developed 
using the Waterfall model, ensuring a systematic 
workflow from requirements analysis through 
implementation, testing, and maintenance. This 
structured approach guarantees reproducibility and 
clear documentation throughout the simulation 
process. 

The main contributions of this research are as 
follows: (1) development of a Python-based 
simulation framework for modeling the Doppler 
effect in circular motion with modulated angular 
velocity; (2) identification of key parameters, the 
modulation constant (b) and modulation frequency 
(ωm), that govern the observed Doppler frequency 
fluctuations; and (3) provision of a quantitative and 
interactive educational tool that enhances conceptual 
understanding of dynamic Doppler phenomena and 
supports experimental design in both physics 
education and astrophysics research. 

This simulation bridges the gap between 
simplified theoretical models and real-world 
dynamical systems, offering a realistic and flexible 
approach for analyzing Doppler frequency variations 
in time-modulated rotational motion. 
 
2. Literature Review  

On May 25, 1842, Christian Doppler (1803–1853) 
introduced the Doppler principle, which explains the 
change in the frequency of waves perceived by an 
observer when the source and receiver move relative 
to each other. The Doppler effect applies not only to 
sound waves but also to electromagnetic waves, 
including microwaves, radio waves, and visible light 
[1,2]. 

When the source and observer are in linear 
motion relative to each other, the direction of 
approach or recession remains constant, so the 
observed wavelength does not change. However, 
when a wave source moves in a circular path with 
continuously changing velocity, its direction of 
motion constantly changes, resulting in a varying 
observed wavelength [14]. Therefore, an 
investigation is needed into how modulated velocity 

changes of a wave source moving in a circular path 
affect the observed frequency. 

To model the rate of these changes, the geometric 
scheme in Fig. 1 below illustrates the parameters that 
must be considered.  

 
Fig. 1: Geometric scheme for calculating the velocity of a 

circular moving wave source [12] 
 
Note that 𝑣஽  is the relative velocity between the 

source and observer, with its positive value if the 
source is moving away and negative if approaching 
the observer. If the observer is stationary (v0 = 0), 
then the Doppler effect equation can be written as: 

𝑓 = 𝑓଴ ൬
𝑐

𝑐 ± 𝑣஽
൰ (1) 

 
To determine 𝑣஽  as a function of time, Fig. 1 provide 
the following information: 

𝑣஽ = 𝑣 𝑐𝑜𝑠 𝛾 (2) 

where 𝑣  is the tangential velocity and 𝛾 is the angle 
between 𝑣  and 𝑣஽ . For uniform circular motion, 𝑣 =

𝜔𝑅 with  𝜔 =
ଶగ

்
, giving 

𝑣 =
2𝜋𝑅

𝑇
 (3) 

Thus, 

𝑣஽ =
2𝜋𝑅 cos 𝛾

𝑇
 (4) 

Based on Fig. 1, it can be seen that 𝜃 + 2𝛼 = 𝜋 dan 
𝛼 + 𝛾 =

గ

ଶ
 , then 𝛾 =

ఏ

ଶ
 . For constant 𝑣 , 𝜃 =

ଶగ௧

்
, so  

𝛾 =
గ௧

்
. Substituting 𝛾 into Equation (4) results in: 

𝑣஽ =
2𝜋𝑅

𝑇
cos ൬

𝜋𝑡

𝑇
൰ (5) 

When Equation (5) is substituted into Equation 
(1), the Doppler effect equation for an object moving 
in a circular path with constant angular velocity is 
obtained as follows: 

𝑓 = 𝑓଴ ቎
𝑐

𝑐 +
2𝜋𝑅

𝑇
cos ቀ

𝜋𝑡
𝑇

ቁ
቏ (6) 

Equation (6), as presented by Saba & Rosa (2003), 
forms the basis for analyzing the Doppler effect in 
objects moving in circular paths with constant 
angular velocity  [12]. However, for more realistic 
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scenarios, such as the case of exoplanets, a model that 
accounts for variations in angular velocity over time 
is required. This is especially important because 
planetary orbits, which affect the motion of stars, 
tend to follow elliptical paths governed by Kepler's 
laws. This concept serves as the foundation for 
developing a model that considers cyclical 
modulation of angular velocity to more accurately 
reflect dynamic conditions, such as those 
encountered in exoplanet detection. 

In this study, the modulated angular velocity 𝜔(𝑡) 
is defined as a combination of the initial constant 
angular velocity 𝜔଴ and a periodically varying 
component: 

𝜔(𝑡) = 𝜔଴ + 𝑏 𝜔଴ cos(𝜔௠𝑡) (7) 

where 𝜔଴ is the initial angular velocity, 𝑏 is the 
modulation constant determining the amplitude of 
the modulation, and 𝜔௠  represents the modulation 
frequency, which indicates how frequently the 
angular velocity changes. 

In this model, the angular position 𝜃(𝑡)  is 
obtained by integrating 𝜔(𝑡) over time:  

    𝜃(𝑡) = න 𝜔଴ 𝑑𝑡 + න 𝑏 𝜔଴ cos(𝜔௠𝑡)  𝑑𝑡 

 𝜃(𝑡) = 𝜔଴ 𝑡 +
௕ ఠబ

ఠ೘
sin(𝜔௠𝑡) (8) 

This integration results in Equation (8), which 
accounts for the cyclical modulation effect on angular 
motion. 

For the modification of the relative velocity 𝑣஽ , 
the factor 𝛾  is calculated as half of the angular 
position 𝛾 =

ఏ(௧)

ଶ
. This adjustment considers the 

modulation of angular velocity. The tangential 
velocity is formulated as 𝑣 = 𝜔(𝑡)𝑅. Hence, Equation 
(2) is modified as follows: 

𝑉஽ = 𝜔(𝑡)𝑅 cos
𝜃(𝑡)

2
 (9) 

Finally, the modified Doppler effect equation to 
accommodate changes in angular velocity and 
relative velocity is simplified as: 

𝑓 = 𝑓଴ ቎
𝑐

𝑐 + 𝜔(𝑡)𝑅 cos
𝜃(𝑡)

2

቏ (10) 

The values of 𝜔(𝑡) and 𝜃(𝑡) must be substituted from 
Equation (7) and (8) respectively. 

Solving Equations (7), (8), and (10) require 
accurate and efficient numerical analysis methods. In 
this context, Python emerges as a highly useful tool, 
facilitating complex calculations with high precision. 
Python not only enhances the efficiency of numerical 
computation but also provides ease of use, making it 
ideal for scientific research [17]. Python is also 
recognized for its data visualization capabilities, with 
libraries such as NumPy, Math, and Matplotlib being 
highly effective for data analysis and presentation 
[12,14]. Python’s ability to combine accurate 
computation with informative and appealing 
visualizations makes it an excellent choice for this 
study, where developing simulations with visual 
elements is key to understanding and communicating 
the analytical results. Thus, the use of Python not only 
simplifies the analytical process but also aids in 
conveying a deeper understanding of the dynamics 

being studied, in line with the objectives of this 
research. 

 
3. Method  

This study employed a numerical simulation 
approach using the Python programming language to 
model the Doppler effect for an object in circular 
motion with time-modulated angular velocity. The 
simulation was developed following the Waterfall 
model, which ensured a systematic workflow through 
five distinct stages: Analysis, Design, Implementation, 
Testing, and Maintenance (Fig. 2) [18–20]. The 
primary objective was to visualize the relationship 
between angular velocity modulation and the 
resulting variation in observed frequency, based on 
Equations (7), (8), and (10). 

 
Fig. 2: Waterfall model phases  [18] 

 
In this phase, the computational requirements for 

simulating the Doppler effect were identified. The 
simulation was designed to compute three primary 
quantities: angular velocity 𝜔(𝑡) , angular position 
𝜃(𝑡), and observed frequency 𝑓(𝑡). These quantities 
were computed according to the following governing 
equations: 
 

𝜔(𝑡) = 𝜔଴ + 𝑏 𝜔଴ cos(𝜔௠𝑡) 

𝜃(𝑡) = 𝜔଴ 𝑡 +
𝑏 𝜔଴

𝜔௠

sin(𝜔௠𝑡) 

𝑓 = 𝑓଴ ቎
𝑐

𝑐 + 𝜔(𝑡)𝑅 cos
𝜃(𝑡)

2

቏ 

 
Python was selected for its versatility in 

numerical computation and visualization. The 
libraries used include NumPy (v1.25) for 
trigonometric and array operations, Math (built-in) 
for mathematical constants, Matplotlib (v3.8) for 
time-series visualization, and Ipywidgets (v8.1) for 
the interactive control of parameters during runtime. 

The simulation parameters were selected based 
on prior experimental studies and physical 
plausibility. The reference configuration follows 
Khose (2022), who analyzed Doppler frequency shifts 
for a 1000 Hz sound source rotating at a radius of 0.2–
0.6 m with a period of 2 s in air, assuming a sound 
speed of 340 m/s [14]. The complete set of 
parameters adopted in this study is listed in Table 1. 
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Table 1: Simulation parameters for circular motion with 
modulated angular 

Sym. Description Value Unit 
𝑓଴ Emitted frequency 1000 Hz 
𝑐 Speed of sound 340 m/s 
𝑅 Radius of circular path 0.20 m 
𝑇 Period 2.0 s 

𝜔଴ Base angular velocity (2𝜋/𝑇) 3.14 rad/s 
𝜔௠ Modulation frequency (0.25𝜔଴) 0.785 rad/s 
∆𝑡 Time step 0.1 s 

 
The modulation constant b was treated as a free 

variable explored interactively in the range 0 ≤ b ≤ 1 
during the preliminary simulation phase. The Python 
initialization block is shown below. 
 

 
 
This configuration ensures both physical realism and 
computational efficiency, providing stable results for 
interactive visualization and educational 
experimentation. 

The design phase focused on translating the 
modified Doppler equations into a modular Python 
simulation capable of computing and visualizing 
angular motion and frequency variation. The 
program was implemented in Google Colab using 
Python 3, with Numpy for numerical computation, 
Matplotlib for data visualization, and Ipywidgets for 
creating interactive controls. 
 

 
 

Three core functions were defined to represent 
the mathematical relationships of angular velocity 
𝜔(𝑡), angular position 𝜃(𝑡), and observed frequency 
𝑓(𝑡) according to equations (7), (8), and (10).  

 

 
 
The functions were designed for modularity and 
verification, ensuring that each quantity could be 
computed and visualized independently or in 
combination. Two visualization modes were 
developed. The interactive mode (File 1) allows users 
to manipulate the modulation constant b in real time 
via an Ipywidgets slider, providing immediate 
feedback on its influence over the angular velocity 
and observed frequency plots. 
 

 

 
The comparative mode (File 2) presents the 

output for multiple fixed b values simultaneously, 
allowing users to observe proportional variations in 
the Doppler shift and angular velocity trends. 

 

 
 

The complete simulation workflow, including data 
input, computation, visualization, and parameter 
interaction, is summarized in Fig. 3, which depicts the 
algorithmic flow of the numerical analysis. This 
design emphasizes clarity, modularity, and 
interactivity, enabling the simulation to serve both 
analytical and educational functions by connecting 
theoretical principles with dynamic computational 
modeling.  

 
Fig. 3: Flowchart of numerical analysis of the Doppler effect 
for a circular moving object with modulated angular velocity 

 

Start 

Read: 𝑏 

t = 0 
dt = 0,1  

t < 10 ? 

𝑓 = 𝑓0 ቌ
𝑐

𝑐 + 𝜔(𝑡)𝑅 cos
𝜃(𝑡)

2

ቍ 

t = t + dt 

Print 
Plot f-t graph 
Plot 𝜔-t graph 

End 

Yes 

No 

𝜔(𝑡) = 𝜔0 + 𝑏 𝜔0 cos(𝜔𝑚 𝑡) 

𝜃(𝑡) = 𝜔0 𝑡 +
𝑏 𝜔0

𝜔𝑚
sin(𝜔𝑚 𝑡) 

Analyze 

𝑓0 = 1000;   𝑇 = 2; 
 𝑐 = 340;   𝑅 = 0,2 

𝜔0 =
2𝜋

𝑇
;   𝜔𝑚 = 0.25𝜔0 
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The flowchart in Fig. 3 summarizes the iterative 
computation of angular velocity, angular position, 
and observed frequency. This algorithm serves as the 
core simulation routine applied in both interactive 
and comparative visualization modes. 
 
3.1 Implementation Phase 

The implementation was carried out in Google 
Colab using Python 3. The first implementation (File 
1) employed an interactive slider to vary b from 0 to 
1 in steps of 0.01, producing dynamic real–time plots 
of 𝜔(𝑡) and 𝑓(𝑡). Preliminary observations indicated 
that large modulation constants (b>0.3) tend to 
increase waveform irregularity, suggesting potential 
nonlinear effects beyond the current model’s scope. 

The main program computes the time-dependent 
quantities for t ∈  [0, 20] s with Δt = 0.1 s. Two 
subplots were created:  
a. Angular velocity vs. time, showing the modulation 

pattern according to Equation (7). 
b. Observed frequency vs. time, demonstrating the 

periodic frequency fluctuation caused by 
modulated angular velocity. 
The Matplotlib library generated line plots and 

included gridlines, labels, and legends for each value 
of b. The Ipywidgets interface enabled smooth real-
time user interaction, allowing for immediate visual 
updates when adjusting b. 
 
3.2 Testing and Validation Phase 

Testing and validation were conducted to ensure 
the numerical stability and physical consistency of 
the simulation results. A sensitivity test was first 
performed by comparing simulations with two   
time–step sizes (∆𝑡 = 0.1 s  and ∆𝑡 = 0.01 s).  The 
deviation in the observed frequency was found to be 
negligible (∆𝑓 < 0.01 Hz) , confirming numerical 
stability under time refinement. 

To verify physical accuracy, a baseline case of b=0 
was executed, representing uniform circular motion. 
The resulting frequency–time relationship was 
consistent with the analytical solution of Saba & Rosa 
(2003), validating the physical correctness of the 
algorithm [12]. Additional sensitivity testing was 
carried out for the modulation frequency  𝜔௠ . 
Doubling 𝜔௠  led to an increase in oscillation rate 
without affecting the amplitude ratio, confirming the 
model’s robustness against parameter scaling.  

Following the sensitivity and stability 
assessments, three representative modulation 
constants (b = 0.15, 0.20, and 0.25) were selected as 
benchmark values for subsequent comparative 
simulations. These values were determined to be 
sufficiently distinct to capture the effect of 
modulation strength on the Doppler frequency 
variation while maintaining numerical stability and 
physical plausibility. 
 
3.3 Maintenance and Refinement 

During the maintenance phase, the simulation 
code was refined to enhance its readability, 
modularity, and long-term adaptability. Core 
computational functions were reorganized into 
separate modules, which improved clarity and 
reduced redundancy across the two simulation files. 
Minor inconsistencies in time-step indexing were 
corrected to maintain synchronization between ω(t) 

and θ(t), ensuring consistent data alignment during 
computation and visualization. 

Visualization parameters were also optimized to 
achieve smoother real-time performance in the 
interactive mode and to maintain graphical 
consistency in the comparative mode. This 
refinement finalized the Waterfall development 
process by consolidating all functional components 
into a stable and reproducible simulation framework. 

Future developments may include exporting 
simulated data for integration with machine learning 
algorithms, particularly for automated pattern 
recognition and feature extraction in Doppler 
frequency shifts. 
 
3.4 Limitations 

While the simulation effectively models frequency 
variations under modulated angular velocity, several 
limitations remain. The model assumes a perfectly 
circular trajectory and neglects relativistic effects, 
which could become significant at higher velocities. 
Environmental influences, such as signal attenuation 
in the propagation medium, were also excluded from 
the current framework. Furthermore, the model was 
not validated against empirical data, although the 
numerical results showed strong agreement with 
established theoretical predictions. These limitations 
will be addressed in future work through 
experimental validation and by extending the model 
to elliptical orbits. 
 
4. Results and Discussion  

The simulation successfully visualized the 
relationship between modulated angular velocity and 
the resulting Doppler frequency in circular motion. 
Two computational modes were implemented: an 
interactive single mode, which allows users to adjust 
the modulation constant b in real-time using a slider 
interface, and a comparative multi-mode, which plots 
several curves for different b values on the same axis. 
Both simulation modes confirm that the modulation 
of angular velocity produces periodic variations in 
the observed frequency, consistent with the 
theoretical model defined in Equations (7), (8), and 
(10). 

To verify the consistency of the numerical 
implementation with the analytical model, the 
variation of angular velocity with time was first 
analyzed.  

 
 

 
Fig. 4: Angular velocity vs. time for modulation constant    

b =0.20; with 𝜔଴ = 3.14 rad/s, 𝜔௠  = 0.785 rad/s, R= 0.20 m 
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Fig. 5: Angular velocity as a function of time for three 

modulation constants b. The curves illustrate the periodic 
modulation of angular speed around the base value 𝜔଴ = 

3.14 rad/s under 𝜔௠= 0.785 rad/s and R = 0.20 m 
 
As shown in Fig. 4, the angular velocity 𝜔(𝑡) follows 
a cosine shaped waveform centered around the base 
value 𝜔଴ = 3.14 rad/s with a modulation frequency 
𝜔௠ = 0.25𝜔଴ . The single mode case with b = 0.20 
demonstrates how the instantaneous angular 
velocity oscillates around the mean, representing 
alternating acceleration and deceleration in circular 
motion. 

To examine the influence of different modulation 
strengths, the comparative simulation was used to 
plot angular velocity for three modulation constants 
b (0.15, 0.20, 0.25). The resulting curves, shown in Fig. 
5, display a proportional increase in oscillation 
amplitude with increasing b, indicating a linear 
relationship between modulation constant and 
angular velocity variation. For b = 0.15, the angular 
velocity ranges from 2.67 to 3.61 rad/s, whereas for 
b = 0.25, it spans from 2.35 to 3.93 rad/s. These 
results demonstrate quantitatively that modulation 
determines the degree of variation in rotational 
speed. 

The time dependent behavior of the observed 
frequency 𝑓(𝑡)  was also analyzed to evaluate how 
angular modulation affects the detected Doppler shift. 
In the single mode simulation, as illustrated in Fig. 6, 
the observed frequency oscillates periodically 
around the emitted frequency 𝑓଴ = 1000 Hz . The 
waveform reflects alterning phases of approach and 
recession between the source and the observer. 
When 𝑐𝑜𝑠

ఏ(௧)

ଶ
> 0 , the source moves toward the 

observer, resulting in frequency maxima, whereas 
minima appear when 𝑐𝑜𝑠

ఏ(௧)

ଶ
< 0. 

 
 

 
Fig. 6: Observed frequency vs. time for modulation 

constant b = 0.20; with fo = 1000 Hz and c = 340 m/s 

 
Fig. 7: Observed frequency as a function of time for three 

different values of the modulation constant b. Increasing b 
produces larger oscillation amplitudes in the Doppler-

shifted frequency, with f₀ = 1000 Hz, c = 340 m/s, T = 2 s 
 
A comparison of the observed frequency for the 

three modulation constants is presented in Fig. 7. 
Increasing the modulation constant b widens the 
frequency fluctuation range, while the mean 
frequency remains close to 𝑓଴ . The results 
summarized in Table 2 show that the amplitude and 
standard deviation of frequency fluctuations increase 
monotonically with b. This measurable trend 
indicates that modulation strength directly 
influences the magnitude of observed frequency 
variations without altering the mean position of the 
signal. 

Table 2: Quantitative summary of observed frequency 
fluctuations for different modulation constants (b) 

b 
Frequency Range 

(Hz) 
Amplitude 

(±Hz) 
Std. Dev 

(Hz) 
0.15 999.6 – 1000.6 ± 0.50 0.29 
0.20 999.4 – 1001.1 ± 0.85 0.47 
0.25 999.0 – 1001.9 ± 1.45 0.63 

 
The simulation outcomes align with the classical 

Doppler principle, whereby the observed frequency 
depends on the relative radial velocity between the 
source and the observer. The periodic modulation of 
angular velocity introduces cyclic Doppler frequency 
variations, with frequency maxima corresponding to 
approaching motion and minimum to receding 
motion. At higher modulation strengths, a slight 
asymmetry appears in the waveform envelope, 
caused by the nonlinear coupling between angular 
position θ(t) and angular velocity ω(t) in Equation 
(10). This behavior accurately reproduces the 
dynamic characteristics of circular motion with non-
uniform angular velocity. 

These results are consistent with the theoretical 
framework of Saba & Rosa (2003), who modeled the 
Doppler effect in circular motion assuming a constant 
angular velocity [12]. The present study extends that 
framework by incorporating time-modulated angular 
velocity, yielding periodic variations consistent with 
the expected Doppler behavior. Compared with the 
work of Khose (2022), which focused on linear 
motion under variable velocity, the present model 
introduces cyclic modulation and thereby captures a 
frequency periodicity absent in linear systems [14]. 
Thus, the proposed simulation bridges the conceptual 
gap between linear and circular motion within 
Doppler analysis. 
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The numerical findings hold potential 
implications for astrophysical observations, 
particularly in the detection of exoplanets via radial-
velocity methods. In such systems, a star’s angular 
velocity varies cyclically as it responds to the 
gravitational influence of orbiting planets, leading to 
measurable oscillations in the observed frequency. 
The simulation demonstrates that even small 
modulations, such as b = 0.15, can produce detectable 
frequency variations of approximately ±0.5 Hz for an 
emitted 1000 Hz signal. This result emphasizes the 
necessity of precisely modeling angular velocity 
modulation to improve the accuracy of Doppler-
based measurements. 
 
5. Conclusions  

This study investigated the Doppler effect in 
circular motion with time-modulated angular 
velocity using a Python-based numerical simulation. 
The primary objective, to determine how the 
modulation of angular velocity influences the 
observed frequency, was achieved by applying a 
modified Doppler equation and varying the 
modulation constant b and modulation frequency ωm. 

The results show that increasing b leads to a 
measurable broadening in the range of observed 
frequencies, while ωm determines the rate of 
oscillation. The simulation confirms that even small 
variations in angular velocity can induce detectable 
frequency shifts around a source frequency of 1000 
Hz, consistent with the theoretical predictions of the 
Doppler principle. The model thus extends classical 
constant-velocity formulations to accommodate 
periodic angular modulation. 

In addition to validating the theoretical 
relationship between angular and frequency 
modulation, the developed simulation provides a 
flexible and reproducible tool for exploring Doppler 
phenomena. It allows for the visualization of 
frequency variation in systems where rotational 
velocity changes cyclically, an analogy relevant to 
astrophysical systems such as exoplanet-star 
interactions. The approach also supports 
instructional applications, enabling students to 
interactively examine how physical parameters affect 
the Doppler frequency. 

Future work may extend this model to elliptical 
trajectories or incorporate experimental validation to 
strengthen the connection between simulation and 
real-world observations. 
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