BibTex Citation Data :
@article{JPA26584, author = {Radha Firaina and Yudhiakto Pramudya}, title = {Numerical Analysis of the Doppler Effect in Circular Motion with Modulated Angular Velocity Using Python}, journal = {Journal of Physics and Its Applications}, volume = {7}, number = {4}, year = {2025}, keywords = {Doppler Effect; Circular Motion; Modulated Angular Velocity; Numerical Analysis; Python Simulation}, abstract = { This study presents a numerical simulation of the Doppler effect for an object in circular motion with time-modulated angular velocity, developed using the Python programming language. The model computes angular velocity, angular position, and observed frequency as functions of time based on a modified Doppler formulation. Two simulation models were implemented: an interactive mode using an IPython widget slider to vary the modulation constant (0 ≤ b ≤ 1), and a comparative mode evaluating three representative modulation strengths (b = 0.15, 0.20, 0.25). The results demonstrate that the modulation of angular velocity produces periodic fluctuations in the observed frequency, consistent with theoretical predictions. Sensitivity testing confirmed numerical stability (∆f < 0.01 Hz) with smaller time steps (∆t = 0.01 s), validating the robustness of the computational model. These findings quantitatively reveal the relationship between modulation parameters and Doppler frequency shifts, providing a reproducible and pedagogically effective framework for studying non-uniform circular motion and its physical implications in astrophysical and acoustic systems. }, issn = {2622-5956}, pages = {143--149} doi = {10.14710/jpa.v7i4.26584}, url = {https://ejournal2.undip.ac.id/index.php/jpa/article/view/26584} }
Refworks Citation Data :
This study presents a numerical simulation of the Doppler effect for an object in circular motion with time-modulated angular velocity, developed using the Python programming language. The model computes angular velocity, angular position, and observed frequency as functions of time based on a modified Doppler formulation. Two simulation models were implemented: an interactive mode using an IPython widget slider to vary the modulation constant (0 ≤ b ≤ 1), and a comparative mode evaluating three representative modulation strengths (b = 0.15, 0.20, 0.25). The results demonstrate that the modulation of angular velocity produces periodic fluctuations in the observed frequency, consistent with theoretical predictions. Sensitivity testing confirmed numerical stability (∆f < 0.01 Hz) with smaller time steps (∆t = 0.01 s), validating the robustness of the computational model. These findings quantitatively reveal the relationship between modulation parameters and Doppler frequency shifts, providing a reproducible and pedagogically effective framework for studying non-uniform circular motion and its physical implications in astrophysical and acoustic systems.
Article Metrics:
Last update:
As an article writer, the author has the right to use their articles for various purposes, including use by institutions that employ authors or institutions that provide funding for research. Author rights are granted without special permission.
Author who publishes a paper at Journal of Physics and Its Applications (JPA) has the broad right to use their work for teaching and scientific purposes without the need to ask permission, including: used for (i) teaching in the author's class or institution, (ii) presentation at meetings or conferences and distributing copies to participants ; (iii) training conducted by the author or author's institution; (iv) distribution to colleagues for research use; (v) use in the compilation of subsequent authors' works; (vi) inclusion in a thesis or dissertation; (vi) reuse of part of the article in another work (with citation); (vii) preparation of derivative works (with citation); (viii) voluntary posting on open websites operated by authors or author institutions for scientific purposes (follow the CC BY-SA License).
Authors and readers can copy and redistribute material in any media or format, and mix, modify, and build material for any purpose but they must provide appropriate credit (provide article citation or content), providing links to the license, and indicate if there are changes.
The authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Journal of Physics and Its Applications (JPA). Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations.
Reproduce any part of this journal, its storage in the database or its transmission by all forms or media is permitted does not need for written permission from JPA. However, it should be cited as an honor in academic manners
JPA and the Department of Physics Diponegoro University and the Editor make every effort to ensure that there are no data, opinions, or false or misleading statements published in JPA. However, the content of the article is the sole and exclusive responsibility of each author.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form JPA]. The copyright form should be signed originally and send to the Editor in the form of printed letters, scanned documents sent via email or fax.
Dr. Eng. Ali Khumaeni, M.E. (Editor in Chief)
Editorial Office of Journal of Physics and Its Applications (JPA)
Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University
Journal of Physics and Its Applications (JPA) (e-ISSN: 2622-5956) is published by the Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Indonesia under Creative Commons Attribution-ShareAlike 4.0 International License.