skip to main content

Analysis of Dose Distribution Alpha and Secondary Particles in Therapy Alpha for Glioblastoma Cancer Using MCNP6 Software

*Sheila Agustina  -  Department of Physics, Sebelas Maret University, Surakarta, Indonesia
Suharyana Suharyana scopus  -  Department of Physics, Sebelas Maret University, Surakarta, Indonesia
Kusumandari Kusumandari scopus  -  Department of Physics, Sebelas Maret University, Surakarta, Indonesia
Fajar Arianto scopus  -  Department of Physics, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia
Received: 3 Feb 2025; Revised: 6 Oct 2025; Accepted: 9 Oct 2025; Available online: 27 Nov 2025; Published: 27 Nov 2025.

Citation Format:
Abstract

The alpha therapy modeling was performed for the treatment of glioblastoma brain cancer using MCNP6 software. The simulation used a head and neck phantom geometry, with a spherical shape of the radiation direction of the cancer cells with a radius of one cm divided into 27 targets. One radiation source is directed to each target center of the cancer cells with five energy variations, namely (430, 425, 415, 410, and 400) MeV. The simulation results are in the form of a distribution of absorbed doses in all targets and healthy cells around them. The simulation results show an average dose distribution of (1.2902 ± 0.0024) 10-11 Gy/alpha with an isodose level of 69.75%. The healthy organ that receives the largest dose and secondary particle distribution after cancer cells is the brain, with an accumulative dose of (1.7446 ± 0.0033) 10-15 Gy/alpha. The dose distribution on cancer cells shows that the irradiation time to kill glioblastoma cancer cells is (1456±0.14) seconds with an alpha current of 1 nA.

Fulltext View|Download
Keywords: MCNP6, Alpha Therapy, Glioblastoma Brain Cancer, Secondary Particles

Article Metrics:

  1. A. Broniscer, O. Chamdine, S. Hwang, T. Lin, S. Pounds, A. O. Thomas, S. Shurtleff, S. Allen, A. Gajjar, P. Northcott, and B. A. Orr, "Gliomatosis Cerebri in Children Shares Molecular Characteristics with other Pediatric Gliomas" Acta Neuropathol., 131, 299–307, (2016)
  2. S. Archontidi, S. Joppé, Y. Khenniche, C. Bardella, and E. Huillard, "Mouse Models of Diffuse Lower-Grade Gliomas of the Adult" in Brain Tumors, G. Seano, Ed. Springer, 3–38, (2021)
  3. H. Jiang, K. Yu, Y. Cui, X. Ren, and S. Lin, "Differential predictors and clinical implications associated with long-term survivors in idh wildtype and mutant glioblastoma" Front. Oncol., 11, 2–3, (2021)
  4. S. Nurwati and R. I. Prasetya, "Kajian Medis Pemanfaatan Teknologi Nuklir BNCT untuk Tumor Otak Jenis Glioma" in Prosiding Pertemuan dan Presentasi Ilmiah, 127–134, (2014)
  5. C. C. Ko, M. Hong, C. F. Li, T. Y. Chen, J. H. Chen, G. Shu, Y. T. Kuo, and Y. C. Lee, "Differentiation between Glioblastoma Multiforme and Primary Cerebral Lymphoma: Additional Benefits of Quantitative Diffusion Weighted MR Imaging" PLoS One, 11(9), 1–15, (2016)
  6. N. J. DeNunzio and T. I. Yock, "Modern Radiotherapy for Pediatric Brain Tumors" Cancers, 12(1), 1533, (2020)
  7. A. Mairani, S. Mein, E. Blakely, J. Debus, M. Durante, A. Ferrari, H. Fuchs, and D. Georg, "Roadmap: Helium Ion Therapy" Phys. Med. Biol., 67, 1–62, (2022)
  8. R. Mutamimah, Susilo, and Y. Sardjono, "Aplikasi Program PHITS Versi 3.21 untuk Analisis Dosis Radiasi Pada Terapi Kanker Otak dengan Metode Proton Therapy" Unnes Phys. Educ. J., 11(1), 26–35, (2022)
  9. I. Chambrelant, E. Jordan, A. Delphine, B. Héakuèdan, N. Georges, and A. Romane, "Proton Therapy and Gliomas: A Systematic Review" Radiation, 1(1), 218–233, (2021)
  10. E. B. Podgoršak, Radiation Physics for Medical Physicists 2nd ed. Springer, (2010)
  11. R. Wickert, T. Tessonnier, M. Deng, S. Adeberg, K. Seidensaal, L. Hoeltgen, J. Debus, K. Herfarth, and S. B. Harrabi, "Radiotherapy with Helium Ions Has the Potential to Improve Both Endocrine and Neurocognitive Outcome in Pediatric Patients with Ependymoma" Cancers, 14(23), 5865, (2022)
  12. M. Vretenar, M. Angoletta, G. Bisoffi, J. Borburgh, L. Bottura, K. Paļskis, R. Taylor, G. Tranquille, E. Benedetto, and M. Sapinski, "Conceptual Design of a Compact Synchroton-Based Facility For Cancer Therapy and Biomedical Research with Helium and Proton Beams" in Int. Part. Accel. Conf., 14, 5024–5027, (2023)
  13. ICRP, "Recommendations of the International Commission on Radiological Protection" Ann. ICRP, 37(2–4), (2007)
  14. S. Zarifi, H. T. Ahangari, S. B. Jia, M. A. Tajik-Mansoury, M. Najafzadeh, and M. P. Firouzjaei, "Bragg peak characteristics of proton beams within therapeutic energy range and the comparison of stopping power using the GATE Monte Carlo simulation and the NIST data" J. Radiothera. Pract., 19(2), 173–181, (2020)
  15. Z. Alatas, S. Hidayati, Akhadi, M. Purba, D. Purwadi, S. Ariyanto, H. Winarno, Rismiyanto, E. Sofyatiningrum, Sofyatiningrum, W. Hendriyanto, H. Widyastono, E. M. Parmanto, and Syahril, "Buku Pintar Nuklir" Jakarta: BATAN, (2011)
  16. I. D. A. Permatasari, "Analisis Berkas Radiasi Pesawat Radioterapi Linear Accelerator (LINAC) dengan Target Tungsten Menggunakan Software MCNPX" Universitas Sebelas Maret, Surakarta, (2018)
  17. R. A. D. S. T. K. Wardani and Suharyana, "Analisis Distribusi Dosis Proton pada Terapi Proton untuk Kanker Glioblastoma menggunakan Software MCNP6" J. Fis., 13(1), 40–50, (2023)
  18. M. A. Chanrion, F. Ammazzalorso, A. Wittig, R. E. Cabillic, and U. Jelen, "Dosimetric consequences of pencil beam width variations in scanned beam particle therapy" Phys. Med. Biol., 58, 3979–3993, (2013)
  19. Y. Liu, Z. Li, R. Slopsema, and L. Hong, "TOPAS Monte Carlo simulation for double scattering proton therapy and dosimetric evaluation" Phys. Med., 62, 53–62, (2019)
  20. A. Maharani, "Analisis Distribusi Dosis Terapi Proton dengan Kolimator Pencil Beam pada Kanker Glioblastoma menggunakan Software MCNP6" Universitas Sebelas Maret, Surakarta, (2022)

Last update:

No citation recorded.

Last update:

No citation recorded.