skip to main content

Review Impact of Compressed Breast Thickness and Exposure Parameters on Mean Glandular Dose (MGD) in Full-Field Digital Mammography Examination

Vivi Sumanti Victory  -  Department of Physics, Brawijaya University, Malang, Jawa Timur, Indonesia
*Johan Andoyo Effendi Noor orcid scopus  -  Department of Physics, Brawijaya University, Malang, Jawa Timur, Indonesia
Chomsin Sulistya Widodo orcid scopus  -  Department of Physics, Brawijaya University, Malang, Jawa Timur, Indonesia
Zaenal Arifin orcid scopus  -  Department of Physics, Diponegoro University, Semarang, Indonesia
Received: 28 May 2025; Revised: 21 Jul 2025; Accepted: 1 Aug 2025; Available online: 27 Nov 2025; Published: 27 Nov 2025.

Citation Format:
Abstract

The purpose of this paper is to review and summarize the relationship between the average mammary gland dose (MGD) and compressed breast thickness (CBT) in digital mammography. The relationship between MGD and CBT, measured using a dosimeter, shows that the thicker the breast, the higher the MGD. However, the relationship between MGD and CBT using patient data (i.e., actual MGD values) may not be directly proportional to CBT because it can be influenced by other factors, such as age. MGD values are directly proportional to CBT when based on phantom measurements. Across various brands and types of mammography units, MGD values are not always directly proportional due to differences in K patterns (incident air kerma), which create different automatic exposure control (AEC) modes. In conclusion, CBT has a complex relationship with MGD. In general, MGD is positively correlated with CBT because increasing breast thickness requires a higher radiation dose to produce optimal image quality. However, this relationship is not always linear and can be negatively correlated under certain conditions, considering the influence of other parameters that can affect both CBT and MGD.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Review The Effect of Compressed Breast Thickness Exposure Factors on Mean Glandular Dose (MGD) in Diagnostic Full-Field Digital Mammography
Subject file pdf
Type Research Instrument
  Download (412KB)    Indexing metadata
Keywords: Breast Cancer, Mammography, Compressed Breast Thickness, Mean Glandular Dose

Article Metrics:

  1. E. Aslar, E. Sahiner, G. S. Polymeris, and N. Meric, "Feasibility of Determining Entrance Surface Dose (ESD) and Mean Glandular Dose (MGD) Using OSL Signal from BeO Dosimeters in Mammography" Radiat. Phys. Chem., 177, 109151, (2020)
  2. S. Iranmakani, T. Mortezazadeh, F. Sajadian, M. F. Ghaziani, A. Ghafari, et al., "A Review of Various Modalities in Breast Imaging: Technical Aspects and Clinical Outcomes" Egypt. J. Radiol. Nucl. Med., 51, 57, (2020)
  3. M. E. Suleiman, P. C. Brennan, and M. F. McEntee, "Mean Glandular Dose in Digital Mammography: A Dose Calculation Method Comparison" J. Med. Imaging, 4(1), 013502, (2017)
  4. I. I. Suliman, S. Mohamed, A. Mahadi, and E. Bashier, "Average Glandular Dose (AGD) and Radiation Dose Optimization in Screen-Film and Digital X-Ray Mammography" Appl. Sci., 13(21), 11901, (2023)
  5. K. Alkhalifah and A. Brindhaban, "Investigation of Exposure Factors for Various Breast Composition and Thicknesses in Digital Screening Mammography Related to Breast Dose" Med. Princ. Pract., 27, 211–216, (2018)
  6. A. Khadka, A. Jha, R. K. Chaudary, and S. L. Shrestha, "Relationship of the Mean Glandular Dose with Compressed Breast Thickness in Digital Mammography" Nepal. J. Radiol., 10(15), 11–15, (2020)
  7. D. R. Dance, C. L. Skinner, K. C. Young, J. R. Beckett, and C. J. Kotre, "Additional Factors for the Estimation of Mean Glandular Breast Dose Using the UK Mammography Dosimetry Protocol" Phys. Med. Biol., 45, 3225–3240, (2000)
  8. R. W. Bouwman, R. E. van Engen, K. C. Young, G. J. den Heeten, et al., "Average Glandular Dose in Digital Mammography and Digital Breast Tomosynthesis: Comparison of Phantom and Patient Data" Phys. Med. Biol., 60, 7893–7907, (2015)
  9. E. Aslar, "Characterization of CaF2:Dy (TLD-200) Dosimeters and Determination of Dosimetric Quantities in Mammography" Radiat. Meas., 154, 106779, (2022)
  10. J. A. Seibert and J. M. Boone, "X-Ray Imaging Physics for Nuclear Medicine Technologists. Part 2: X-Ray Interactions and Image Formation" J. Nucl. Med. Technol., 33(1), 3–18, (2005)
  11. J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, and J. M. Boone, The Essential Physics of Medical Imaging 3rd ed. Lippincott Williams & Wilkins, (2011)
  12. F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry Wiley-VCH, (2004)
  13. Y. S. Horowitz, Thermoluminescence and Thermoluminescent Dosimetry CRC Press, (1984)
  14. G. S. Polymeris, G. Kitis, and C. Furetta, "Advances in Optically Stimulated Luminescence of BeO and its Applications in Radiation Dosimetry" Radiat. Meas., 46(12), 1346–1353, (2011)
  15. S. W. S. McKeever, M. Moscovitch, and P. D. Townsend, Thermoluminescence Dosimetry Materials: Properties and Uses Nuclear Technology Publishing, (1995)
  16. S. Dhou, E. Dalah, R. AlGhafeer, A. Hamidu, and Abdulmunhem, "Regression Analysis Between the Different Breast Dose Quantities Reported in Digital Mammography and Patient Age, Breast Thickness, and Acquisition Parameters" J. Imaging, 8, 211, (2022)
  17. E. K. Sosu, M. Boadu, and S. Y. Mensah, "Determination of Dose Delivery Accuracy and Image Quality in Full-Field Digital Mammography" J. Radiat. Res. Appl. Sci., 11, 232–236, (2018)
  18. X. Du, N. Yu, Y. Zhang, and J. Wang, "The Relationship of the Mean Glandular Dose with Compressed Breast Thickness in Mammography" J. Public Health Emerg., 1, 32, (2017)
  19. R. E. Hendrick, "Radiation Doses and Cancer Risks from Breast Imaging Studies" Radiology, 290(2), 284–292, (2019)
  20. D. L. Miglioretti, J. Lange, J. J. van den Broek, C. I. Lee, N. T. van Ravesteyn, D. Ritley, et al., "Radiation Induced Breast Cancer Incidence and Mortality from Digital Mammography Screening: A Modelling Study" Ann. Intern. Med., 164, 205–214, (2016)
  21. H. M. Al-Naemi, O. B. Taha, A. O. Al-attar, M. A. Tarabieh, I. I. Abdallah, N. A. Iqelian, and A. E. Aly, "Evaluation of Mean Glandular Dose from Digital Mammography Exams at Qatar and Compared with International Guidelines Levels" Br. J. Med. Med. Res., 14, 1–9, (2016)
  22. C. Pwamang, E. Sosu, C. Schandorf, M. Boadu, and V. Hewlett, "Assessment of Dose to Glandular Tissue of Patients Undergoing Mammography Examination" J. Radiol. Radiat. Ther., 4, 1062, (2016)
  23. D. R. Dance, K. C. Young, and R. E. V. Engen, "Estimation of Mean Glandular Dose for Breast Tomosynthesis: Factors for Use with the UK, European and IAEA Breast Dosimetry Protocols" Phys. Med. Biol., 59, 427–437, (2014)
  24. N. I. N. Suliman, R. Supar, and H. Sharip, "Effect of Compressed Breast Thickness on Average Glandular Dose (AGD) During Screening Mammography Using Full Field Digital Mammography (FFDM)" J. Acad. UiTM, 8(1), 34–44, (2020)
  25. H. M. Al Naemi, A. Aly, A. J. Omar, A. Al Obadli, O. Ciraj Bjelac, M. H. Kharita, and M. M. Rehani, "Evaluation of Radiation Dose for Patients Undergoing Mammography in Qatar" Radiat. Prot. Dosim., 189(3), 354–361, (2020)
  26. L. Wang, X. Zhou, J. Liu, Y. Li, and Y. Zhang, "Quantitative Imaging Techniques and Dose Estimation in Mammography" J. X-Ray Sci. Technol., 29(1), 85–95, (2021)
  27. J. E. Baek, B. J. Kang, S. H. Kim, and H. S. Lee, "Radiation Dose Affected by Mammographic Composition and Breast Size: First Application of a Radiation Dose Management System for Full-Field Digital Mammography in Korean Women" World J. Surg. Oncol., 15, 38, (2017)
  28. S. P. Zuckerman, E. F. Conant, B. M. Keller, A. D. A. Maidment, B. Barufaldi, S. P. Weinstein, M. Synnestvedt, and E. S. McDonald, "Implementation of Synthesised Two-Dimensional Mammography in a Population-Based Digital Breast Tomosynthesis Screening Program" Radiology, 281, 730–736, (2016)
  29. H. Alahmad, K. AlEnazi, A. Alshahrani, G. R. Alreshaid, S. Albariqi, and M. Alnafea, "Evaluation of Mean Glandular Dose from Mammography Screening: A Single-Center Study" J. Radiat. Res. Appl. Sci., 16, 100749, (2023)
  30. D. Y. Lee, Y. I. Jo, and S. H. Yang, "Development of Breast Phantoms Using a 3D Printer and Glandular Dose Evaluation" J. Appl. Clin. Med. Phys., 22(10), 270–277, (2021)
  31. A. M. Asbeutah, A. Brindhaban, A. A. AlMajran, and S. A. Asbeutah, "The Effect of Different Exposure Parameters on Radiation Dose in Digital Mammography and Digital Breast Tomosynthesis: A Phantom Study" Radiography, 26, e129–e133, (2020)
  32. C. R. Jeukens, U. C. Lalji, E. Meijer, et al., "Radiation Exposure of Contrast-Enhanced Spectral Mammography Compared with Full-Field Digital Mammography" Invest. Radiol., 49, 659–665, (2014)
  33. K. C. Teoh, H. A. Manan, N. M. Norsudiin, and I. H. Rizuana, "Comparison of Mean Glandular Dose Between Full Field Digital Mammography and Digital Breast Tomosynthesis" Healthcare, 9(12), 1758, (2021)
  34. Z. A. S. Hegian, L. M. Abu Tahoun, R. M. Ramli, and N. Z. Noor Azman, "Relationship Between Mean Glandular Dose and Compressed Breast Thickness by Age Groups (40–49, 50–64, 65–80)" Radiat. Prot. Dosim., 200(1), 25–31, (2024)
  35. S. Kunosic, D. Ceke, M. Kopric, and L. Lincender, "Determination of Mean Glandular Dose for Two Age Groups" HealthMED, (2010)
  36. M. N. M. Norazman, R. M. Ramli, and S. Z. S. S. Aziz, "Patient-Specific Mean Glandular Dose Estimation in Digital Mammography Using the Volpara Method" Diagnostics, 14(22), 2568, (2024)
  37. A. El Sayed, R. E. El Shiekh, S. M. Yousef, and M. I. Kora, "Evaluation of Patient Dose and Risk in Digital Mammography for Patients in Sudan" Alexandria J. Med., 59(1), 42–48, (2023)
  38. P. C. Gotzche and M. Neilson, "Screening for Breast Cancer with Mammography" Cochrane Database Syst. Rev., 4, CD001877, (2001)
  39. S. Uchiyama, H. Suzuki, H. Ueda, and K. Ueda, "Comparison of Different Exposure Modes in Full-Field Digital Mammography: Phantom Study for Automatic Exposure Control Versus Manual" Jpn. J. Health Phys., 46(2), 148–155, (2011)
  40. G. Tartarotti et al., "Image Quality and Dose Stability of AEC Mode in Mammography and Breast Tomosynthesis Across Different Manufacturers: A Phantom-Based Comparative Study" Eur. Radiol. Exp., 8(1), 16, (2024)
  41. D. F. Uhlenbrock and T. Mertelmeier, "Comparison of Anode/Filter Combinations in Digital Mammography with Respect to the Average Glandular Dose" Georg Thieme Verlag KG Stuttgart. New York, 181(3), 249–254, (2009)
  42. M. Aminah, K. H. Ng, B. J. J. Abdullah, and N. Jamal, "Optimal Beam Quality Selection Based on Contrast to Noise Ratio and Mean Glandular Dose in Digital Mammography" Australas. Phys. Eng. Sci. Med., 33, 329–334, (2010)
  43. Y. Hristova-Popova, A. M. Teneva, M. P. Yordanov, and N. D. Mitev, "Investigation of Glandular Dose in Mammography: Influence of the Breast Glandularity and Compression Thickness" Radiat. Phys. Chem., 181, 109305, (2021)
  44. A. AlMuhanna, S. M. Yousef, H. S. AlRammah, and S. M. AlDosari, "Evaluation of Patient Radiation Dose During Mammographic Examination" Radiography, 28(1), e102–e109, (2022)
  45. C. Dance, S. Christofides, A. Maidment, I. McLean, and K. Ng, "Dosimetry in Diagnostic Radiology: An International Code of Practice" IAEA Hum. Health Ser., 23, Vienna: IAEA, (2011)
  46. N. Moshina, G. G. Waade, M. Roman, S. Sebuodegard, and S. Hofvind, "Subjective Versus Fully Automated Mammographic Density Assessment in the Norwegian Breast Cancer Screening Program" Eur. Soc. Radiol., ECR, C-0618, (2017)
  47. M. M. Alakhras, C. Mello-Thoms, R. Bourne, M. Rickard, J. Diffey, and P. C. Brennan, "Radiation Dose Differences Between Digital Mammography and Digital Breast Tomosynthesis are Dependent on Breast Thickness" in Proc. SPIE Med. Imaging, 9783, San Diego, CA, USA, (2016)
  48. A. Merad, S. Saadi, and N. Khelassi-Toutaoui, "Comparison of Two Full Field Digital Mammography Systems: Image Quality and Radiation Dose" in AIP Conf. Proc., 1994, 060008, New York, NY, USA: AIP Publishing, (2018)
  49. N. Jamal, K. H. Ng, and D. McLean, "A Study of Mean Glandular Dose During Diagnostic Mammography in Malaysia and Some of the Factors Affecting It" Br. J. Radiol., 76, 238–245, (2003)
  50. P. J. Allisy-Roberts and J. Williams, Farr's Physics for Medical Imaging 2nd ed. Elsevier Health Sciences, (2020)

Last update:

No citation recorded.

Last update:

No citation recorded.