BibTex Citation Data :
@article{JPA12419, author = {Heri Sugito and Ketut Sofjan Firdausi and Ali Khumaeni and Syifa Azahra}, title = {Characteristics of colloid silver solution based on changes in concentration and electric field using electrooptic equipment}, journal = {Journal of Physics and Its Applications}, volume = {4}, number = {1}, year = {2021}, keywords = {Electrooptics, Polarization Angle, Colloidal Silver Solution}, abstract = { Research on the characteristics of colloidal silver solutions based on changes in concentration and electric field using electrooptic devices has been carried out. The purposes of this study was to determine the characteristic of colloidal silver solution based on variations in concentration and electrooptic effects. Electrooptics work based on changes in the polarization angle of the sample. The sample used is a colloidal silver solution with various concentrations. The colloidal silver solution was obtained by laser ablation method and then dissolved in aquabidest. The light source used is a laser pointer with = 532 nm. The electric field applied to the sample is 0-9 kV. The results showed that colloidal silver solution at an angle of 0º showed active plasmon resonance at the peak of polarization with concentrations of 1.9 ppm, 2.28 ppm, and 3.8 ppm. An angle of 90º also shows active plasmon resonance at the peak of polarization with a concentration of 3.8 ppm. From the results, it can be concluded that the characteristics of colloidal silver solution on change in the polarization angle due to an electric field show non-linier properties with increasing concentration. }, issn = {2622-5956}, pages = {20--23} doi = {10.14710/jpa.v4i1.12419}, url = {https://ejournal2.undip.ac.id/index.php/jpa/article/view/12419} }
Refworks Citation Data :
Research on the characteristics of colloidal silver solutions based on changes in concentration and electric field using electrooptic devices has been carried out. The purposes of this study was to determine the characteristic of colloidal silver solution based on variations in concentration and electrooptic effects. Electrooptics work based on changes in the polarization angle of the sample. The sample used is a colloidal silver solution with various concentrations. The colloidal silver solution was obtained by laser ablation method and then dissolved in aquabidest. The light source used is a laser pointer with = 532 nm. The electric field applied to the sample is 0-9 kV. The results showed that colloidal silver solution at an angle of 0º showed active plasmon resonance at the peak of polarization with concentrations of 1.9 ppm, 2.28 ppm, and 3.8 ppm. An angle of 90º also shows active plasmon resonance at the peak of polarization with a concentration of 3.8 ppm. From the results, it can be concluded that the characteristics of colloidal silver solution on change in the polarization angle due to an electric field show non-linier properties with increasing concentration.
Article Metrics:
Last update:
As an article writer, the author has the right to use their articles for various purposes, including use by institutions that employ authors or institutions that provide funding for research. Author rights are granted without special permission.
Author who publishes a paper at Journal of Physics and Its Applications (JPA) has the broad right to use their work for teaching and scientific purposes without the need to ask permission, including: used for (i) teaching in the author's class or institution, (ii) presentation at meetings or conferences and distributing copies to participants ; (iii) training conducted by the author or author's institution; (iv) distribution to colleagues for research use; (v) use in the compilation of subsequent authors' works; (vi) inclusion in a thesis or dissertation; (vi) reuse of part of the article in another work (with citation); (vii) preparation of derivative works (with citation); (viii) voluntary posting on open websites operated by authors or author institutions for scientific purposes (follow the CC BY-SA License).
Authors and readers can copy and redistribute material in any media or format, and mix, modify, and build material for any purpose but they must provide appropriate credit (provide article citation or content), providing links to the license, and indicate if there are changes.
The authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Journal of Physics and Its Applications (JPA). Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations.
Reproduce any part of this journal, its storage in the database or its transmission by all forms or media is permitted does not need for written permission from JPA. However, it should be cited as an honor in academic manners
JPA and the Department of Physics Diponegoro University and the Editor make every effort to ensure that there are no data, opinions, or false or misleading statements published in JPA. However, the content of the article is the sole and exclusive responsibility of each author.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form JPA]. The copyright form should be signed originally and send to the Editor in the form of printed letters, scanned documents sent via email or fax.
Dr. Eng. Ali Khumaeni, M.E. (Editor in Chief)
Editorial Office of Journal of Physics and Its Applications (JPA)
Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University
Journal of Physics and Its Applications (JPA) (e-ISSN: 2622-5956) is published by the Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Indonesia under Creative Commons Attribution-ShareAlike 4.0 International License.