OPTIMAL CONTROL MODELLING OF COVID-19 OUTBREAK IN SEMARANG CITY INDONESIA

Dhimas Mahardika, R. Heru Tjahjana, Sunarsih Sunarsih


DOI: https://doi.org/10.14710/jfma.v3i2.8546

Abstract


Corona virus infection is lethal and life threatening to human life, for prevention it is necessary to carry out quarantined for a portion of susceptible, exposed, and infected population, this kind of quarantine is intended to reduce the spread of the corona virus. The optimal control that will be carried out in this research is conducting quarantine for a portion of susceptible, exposed, and infected individuals. This control function will be applied to the dynamic modelling of Covid-19 spread using Pontryagin Minimum Principle. We will describe the formulation of dynamic system of Covid-19 spread with optimal control, then we use Pontryagin Minimum Principle to find optimal solution of the control. The optimal control will aim to minimize the number of infected population and control measures. Numerical experiments will be performed to illustrate and compare the graph of Covid-19 spread model with and without control.

Keywords


Covid-19; Dynamical System; Pontryagin Minimum Principle; Fixed time and fixed end point optimal control;

Full Text:

PDF

References


F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology. New York, NY: Springer New York, 2012.

L. S. Pontryagin, Mathematical Theory of Optimal Processes. Routledge, 2018.

M. A. Shereen, S. Khan, A. Kazmi, N. Bashir, and R. Siddique, “COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses,” Journal of Advanced Research, vol. 24, pp. 91–98, 2020. https://doi.org/10.1016/j.jare.2020.03.005.

C. Wang, P. W. Horby, F. G. Hayden, and G. F. Gao, “A novel coronavirus outbreak of global health concern,” The Lancet, vol. 395, no. 10223, pp. 470–473, 2020. https://doi.org/10.1016/s0140-6736(20)30185-9.

B. Kan, M. Wang, H. Jing, H. Xu, X. Jiang, M. Yan, W. Liang, H. Zheng, K. Wan, Q. Liu, B. Cui, Y. Xu, E. Zhang, H. Wang, J. Ye, G. Li, M. Li, Z. Cui, X. Qi, K. Chen, L. Du, K. Gao, Y.-T. Zhao, X.-Z. Zou, Y.-J. Feng, Y.-F. Gao, R. Hai, D. Yu, Y. Guan, and J. Xu, “Molecular Evolution Analysis and Geographic Investigation of Severe Acute Respiratory Syndrome Coronavirus-Like Virus in Palm Civets at an Animal Market and on Farms,” Journal of Virology, vol. 79, no. 18, pp. 11892–11900, 2005. https://doi.org/10.1016/s0140-6736(20)30185-9

B. J. Zheng, Y. Guan, K. H. Wong, J. Zhou, K. L. Wong, B. W. Y. Young, L. W. Lu, and S. S. Lee, “SARS-related Virus Predating SARS Outbreak, Hong Kong,” Emerging Infectious Diseases, vol. 10, no. 2, pp. 176–178, 2004. https://doi.org/10.3201/eid1002.030533

Z. Shi and Z. Hu, “A review of studies on animal reservoirs of the SARS coronavirus,” Virus Research, vol. 133, no. 1, pp. 74–87, 2008. https://doi.org/10.1016/j.virusres.2007.03.012

Anita S, Arnautu V, & Capasso V, An introduction to optimal control problems in life sciences and economics: From mathematical models to numerical simulation with MATLAB®, Birkhäuser 2010.

Kamien MI , Schwartz NL Dynamic Optimization, Advanced Textbooks in Economics 31. second ed. Amsterdam: North-Holland Publishing Co 1991.

Naidu, D. S., Pontryagin minimum principle in Optimal Control Systems, Boca Raton: CRC Press, pp. 249-291, 2003. https://doi.org/10.1201/9781315214429-6 2018.

Yang Z, Zeng Z, Wang K, Wong S-S, Liang W, Zanin M, et al., "Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions," Journal of Thoracic Disease, vol. 12, no. 3, pp. 165-174 2020. https://doi.org/10.21037/jtd.2020.02.64.

Cui, Q., Hu, Z., Li, Y., Han, J., Teng, Z., & Qian, J., " Dynamic variations of the COVID-19 disease at different quarantine strategies in Wuhan and Mainland China," Journal of Infection and Public Health, vol. 13, no. 6, pp. 849-855, 2020 https://doi.org/10.1016/j.jiph.2020.05.014.

Driss K, Abderrahim L, Omar B, Mostafa R, El H L., "Spread of COVID-19 in Morocco discrete mathematical modeling: Optimal control strategies and cost-effectiveness analysis," Journal of Mathematical and Computational Science, vol. 5, pp. 2070-2093, 2020. https://doi.org/10.28919/jmcs/4817.

Pérez López, C., Numerical Calculus with MATLAB. Applications to differential equations, Berkeley, CA: Apress, pp. 73-100, 2014. https://doi.org/10.1007/978-1-4842-0310-1_6.

Cannarsa, P., & Frankowska, H., "Infinite horizon optimal control: Transversality conditions and sensitivity relations," American Control Conference (ACC) 2017. https://doi.org/10.23919/acc.2017.7963349

Frank L. Lewis Draguna L. Vrabie Vassilis L., Syrmos Final-time-free and constrained input control in Optimal Control, (eds F.L. Lewis, D.L. Vrabie and V.L. Syrmos), pp. 213-259, 2012. https://doi.org/10.1002/9781118122631.ch5

Wang, M and Hu, Z ., "Bats as animal reservoirs for the SARS coronavirus: Hypothesis proved after 10 years of virus hunting," Virologica Sinica, vol. 28, no. 6, pp. 315-317, 2013. https://doi.org/10.1007/s12250-013-3402-x


Refbacks

  • There are currently no refbacks.


Publisher:

Department of Mathematics, Faculty of Science and Mathematics, Diponegoro University

Mailing address: Jl. Prof Soedarto, SH, Tembalang, Semarang, Indonesia 50275

Telp./Fax             : (+6224) 70789493 / (+62224) 76480922

Website              : www.math.fsm.undip.ac.id

E-mail                : admin.math@live.undip.ac.id

 

Indexed in:

GOOGLE SCHOLAR CROSSREF SINTA PORTAL GARUDA SCILIT DIMENSIONS