skip to main content

NORMA OPERATOR PADA RUANG FUNGSI TERINTEGRAL DUNFORD

*Solikhin Solikhin  -  Departemen Matematika, FSM Universitas Diponegoro, Indonesia
Susilo Hariyanto  -  Departemen Matematika, FSM Universitas Diponegoro, Indonesia
Y.D. Sumanto  -  Departemen Matematika, FSM Universitas Diponegoro, Indonesia
Abdul Aziz  -  Departemen Matematika, FSM Universitas Diponegoro, Indonesia

Citation Format:
Abstract

We are discussed operator norms on spce of Dunford integral function. We show that for a function which Dunford integral, operator from dual space into space of Lebesgue integral  is a bounded linear operator. Furthermore, sets of all bounded linear operator is a linear space and it is a normed space by norm certain. Finally, the distance function generated by the norm is metrix space.

Fulltext View|Download

Article Metrics:

  1. Lee P.Y. (1989), Lanzhou Lectures on Henstock Integration, World Scientific, Singapore
  2. Gordon, R. A. (1994), The Integral of lebesgue, Denjoy, Perron, and Henstock, Mathematical Society, USA
  3. Schwabik, S. & Guoju, Ye. (2005), Topics in Banach Space Integration, World Scientific, Singapore
  4. Guoju, Ye. & Tianqing, An. (2001), On Henstock-Dunford and Henstock-Pettis Integrals, IJMMS, 25(7): 467-478
  5. Solikhin, dkk. (2018), Operator pada Ruang Fungsi Terintegral Dunford, Journal of Fundamental Mathematics and Application (JFMA), 2(1): 110, http://dx.doi.org/10.14710/jfma.v1i2.17
  6. Solikhin, dkk. (2018), Seminorma pada Ruang Fungsi Terintegral Dunford, Journal of Fundamental Mathematics and Application (JFMA), 2(1): 26-34, http://dx.doi.org/10.14710/jfma.v2i1.30
  7. Kreyszig, E. (1989), Introductory Funtional Analysis with Applications, John Willey & Sons, USA
  8. Darmawijaya, S. (2007), Pengantar Analisis Abstrak, Jurusan Matematika Fakultas MIPA Universitas Gadjah Mada, Yogyakarta

Last update:

No citation recorded.

Last update:

No citation recorded.