skip to main content

PENYELESAIAN NUMERIK MODEL PREDATOR-PREY DENGAN SKEMA BEDA HINGGA TAK-STANDAR

*Rina Reorita  -  Jurusan Matematika, Universitas Jenderal Soedirman, Indonesia
Renny Renny  -  Jurusan Matematika, Universitas Jenderal Soedirman, Indonesia

Citation Format:
Abstract

Interaction between predator and prey can be represented as a system of non-linear differential equation which is difficult to be solved analytically. In this research, a predator-prey model with an addition of harvesting factor is discretized into a system of difference equation using non-standard finite difference scheme. The analysis result shows that the developed scheme has qualitative property which is consistent to the continuous system.

Fulltext View|Download

Article Metrics:

  1. Edwards, C. H. dan Penney, D. E. 2000 : Elementary Differential Equations with Boundary Value Problems Fourth Edition. Prentice-Hall. New Jersey
  2. Li, B., Liu, S., Cui, J., dan Li, J. 2016. A Simple Predator-Prey Population Model with Rich Dynamics. Applied Sciences. 6(115). 150 – 168
  3. Suryanto, A. 2012. Skema Beda Hingga Tak-Standar untuk Model Epidemi dengan Laju Penularan Tersaturasi yang Dimodifikasi, Konferensi Nasional Matematika XVI, Jatinangor
  4. Allen, L.J.S. 2006. An Introduction to Mathematical Biology. Pearson Education. United States
  5. Mickens, R. E. 2000. Application of Nonstandard Finite Difference Schemes, World Scientific. Publishing Co Pte. Ltd
  6. Mickens, R.E. 2007. Calculation of Denominator Functions for Nonstandard Finite Difference Schemes for Differential Equations Satisfying a Positivity Condition. Numer. Methods Partial Differential Equations. 23(3).672 – 691
  7. Brauer, F. And Castillo-Chavez, C. 2001. Mathematical Models in Population Biology and Epidemiology. Springer. New York
  8. Elaydi, S. 2005. An Introduction to Difference Equations. 3rd ed. Springer. New York

Last update:

No citation recorded.

Last update:

No citation recorded.