NORMAL ELEMENT ON IDENTIFY PROPERTIES

Titi Udjiani, Solikhin Zaki, Suryoto Suryoto, Harjito Harjito


Abstract


One type of element in the ring with involution is normal element. Their main properties is commutative with their image by involution in ring. Group invers  of element in   ring  is  always commutative with element   which is commutative  with itself. In this paper, properties of normal element in ring with involution  which also have generalized  Moore Penrose invers  are constructed by using commutative property of  group invers  in  ring.


Full Text:

PDF

References


E. Boasso, “On the Moore Penrose inverse in C* algebras“, Extracta Math, vol 21, no 2, pp. 93-106, 2006.

R. Harte and M. Mbekhta, “On generalized inverses in C* algebras“, Studia Math., vol 1, no 103, pp. 71-77, 1992.

D. Cvetkovi´c, D.S. Djordjevi´c and J.J. Koliha, “Moore–Penrose inverse in rings with involution“, Linear Algebra Appl. no 426, 371–381, 2007.

D. Mosic, D.S.Djordjevic, “Moore Penrose Invertible Normal and Hermitian Elements in Ring “, Linear Algebra Appl., no 431, pp. 732-745, 1992.

T. Udjiani, B. Surodjo, S.Wahyuni, “Generalized Moore Penrose inverse in rings with an involution“, Far East Journal of Mathematical Sciences, vol 1, no 92, pp. 29-40, 2014.

T. Udjiani, Harjito, Suryoto and Nikken Prima, “Generalized Moore Penrose Inverse of Normal Elements in a Ring with Involution“', IOP Conf. Series: Materials Science and Engineering, no 300, 012074, 2018


Refbacks

  • There are currently no refbacks.


Publisher:

Department of Mathematics, Faculty of Science and Mathematics, Diponegoro University

Mailing address: Jl. Prof Soedarto, SH, Tembalang, Semarang, Indonesia 50275

Telp./Fax             : (+6224) 70789493 / (+62224) 76480922

Website              : www.math.fsm.undip.ac.id

E-mail                : admin.math@live.undip.ac.id

 

Indexed in:

GOOGLE SCHOLAR CROSSREF SINTA PORTAL GARUDA SCILIT DIMENSIONS