skip to main content

IMPLEMENTASI LOGIKA FUZZY MAMDANI UNTUK MENENTUKAN KOMPOSISI OPTIMAL PUPUK ORGANIK DAN ANORGANIK NPK PADA TANAMAN MENTIMUN

*Fajar Ridwan Analistyawan  -  Departemen Matematika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Sutrisno Sutrisno  -  Departemen Matematika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Solichin Zaki  -  Departemen Matematika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia

Citation Format:
Abstract

In this article, we have determined the optimal composition of organic fertilizer and NPK inorganic fertilizer for cucumber plants. We have formulated two fuzzy systems which are fuzzy system 1 and fuzzy system 2. The inputs for fuzzy system 1 are plants’ height and the number of leaves where the output is the growth rate. Fuzzy system 2 had input of growth rate and NPK concentration and output of organic fertilizer concentration. By processing the data using fuzzy system, we have compared the cucumber plant with organic fertilizer and NPK to cucumber plant that was used only NPK fertilizer. The result had shown that the cucumber plant with organic fertilizer and NPK was produced the better outcome than the cucumber plants with NPK only.

Fulltext View|Download

Article Metrics:

  1. Kusumadewi, S., dan Hari Purnomo. 2010. Aplikasi Logika Fuzzy untuk Pendukung Keputusan Edisi 2. Yogyakarta: Graha ilmu
  2. Sarkar. A., Sahoo G., and Sahoo U. C. 2012. Aplication of Fuzzy Logic in Transport Planning. International Journal on Soft Computing (IJSC). Vol. 3, No. 2, Pp. 1-21
  3. Mehan, Sandeep. 2011. Introduction of Traffic Light Controller with Fuzzy Control System. IJECT. Vol. 2, Issue 3, Pp. 119-122
  4. Homaei, H., Hejazi S. R., and Dehghan Seyed A. M. 2015. A New Traffic Light Controller Using Fuzzy Logic for a Full Single Junction Involving Emergency Vehicle Preemption. Journal of Uncertain Systems. Vol. 9, No. 1, Pp. 49-61
  5. Dahiru, Ahmed Tijjani. 2015. Fuzzy Logic Inference Applications in Road Traffic and Parking Space Management. Journal of Software Engineering and Applications. Vol. 2015, No. 8, Pp. 339-345
  6. Demetgul, Mustafa, Ulkir Osman, Waqar Tayyab. 2014. Washing machine using fuzzy logic. Automation, Control and Intelligent Systems. Vol. 2, No. 3, Pp. 27-32
  7. Sylvia, David M., Fuhrmann, Jeffry J., Hartel, Peter G., and Zuberer David A. 2005. Principles and Applications of Soil Microbiology Second Edition. New Jersey: Prentice Hall
  8. Khasanah, Mukharom N. 2012. Pengaruh Pupuk NPK Tablet dan Pupuk Nutrisi Organik Cair Terhadap Pertumbuhan Bibit Kelapa Sawit (Elaeis guineensis Jacq.) di Pembibitan Utama. Fakultas Pertanian, Universitas Riau
  9. Wahyujanti, Si Teguh. 2009. Implementasi Metode Fuzzy Logic Untuk Pengaturan Kelembaban Tanah Pada Tanaman Cabai. EEPIS, ITS
  10. Ramdani, dan Teguh Budi Santoso. 2016. Penerapan Fuzzy Inference Sistem Untuk Kontrol Suhu Dan Kelembaban Budidaya Jamur Tiram Berbasis Mikrokontroler. Jurnal Ilmiah Fakultas Teknik LIMIT’S. Vol. 12, No. 1, Hal. 15-26
  11. Rezaei Mohammad, Asadizadeh Mostafa, Majdi Abbas, Hossaini Mohammad Farouq, Prediction of representative deformation modulus of longwall panel roof rock strata using Mamdani fuzzy system, International Journal of Mining Science and Technology, Vol. 25, No. 1, 2015, Hal. 23-30
  12. Mohammad Rezaei, Indirect measurement of the elastic modulus of intact rocks using the Mamdani fuzzy inference system, Measurement, Vol. 129, 2018
  13. J. Sun, Y.P. Li, P.P. Gao, B.C. Xia, A Mamdani fuzzy inference approach for assessing ecological security in the Pearl River Delta urban agglomeration, China, Ecological Indicators, Vol. 94, No. 1, 2018

Last update:

No citation recorded.

Last update:

No citation recorded.