skip to main content

A note on outer-connected hop Roman dominating function in graphs

*Leomarich F Casinillo orcid scopus  -  Department of Mathematics, Visayas State University, Philippines

Citation Format:
Abstract

Let $G=(V(G), E(G))$ be a simple, connected, and finite graph with vertex set $V(G)$ and edge set $E(G)$.  Let $\phi: V(G) \rightarrow \{0, 1, 2\}$  be an HRDF on $G$, and for each $i\in \{0, 1, 2\}$, let  $V_i=\{u\in V(G): \phi(u)=i\}$. A function $\phi=(V_0, V_1, V_2)$ is an outer-connected hop Roman dominating function (OcHRDF) on $G$ if, for every $v\in V_0$, there exists $u\in V_2$ such that $d_G(u, v)=2$ and either $V_1=V(G)$ or the sub-graph $\langle V_0 \rangle$ is connected. The weigth of OcHRDF $\phi$ denoted by $\widetilde{\omega}_G^{chR}(\phi)$ and defined by $\widetilde{\omega}_G^{chR}(\phi)=\sum_{v\in V(G)}\phi(v)$=|V_1|+2|V_2|$. The outer-connected hop Roman domination number of $G$ is denoted by $\widetilde{\gamma}_{chR}(G)$ and defined by $\widetilde{\gamma}_{chR}(G)=min\{$\widetilde{\omega}_G^{chR}(\phi): \phi is an OcHRDF  on G\}$. Moreover, any OcHRDF $\phi$ on $(G)$ with $\widetilde{\gamma}_{chR}(G)=$\widetilde{\omega}_G^{chR}(\phi)$ is called $\overline{\gamma}_{chR}$-function on $G$. In this paper, a new restricted parameter of a hop Roman domination in graphs is introduced, and some combinatorial properties are discussed.

Fulltext View|Download
Keywords: Outer-connected domination; hop Roman domination; connected subgraph

Article Metrics:

  1. Gross, J. L., & Yellen, J. (2003). Handbook of graph theory. CRC press
  2. Casinillo, L. F. (2018). A note on Fibonacci and Lucas number of domination in path. Electronic Journal of Graph Theory and Applications (EJGTA), 6(2), 317-325
  3. Cockayne, E. J., Dreyer Jr, P. A., Hedetniemi, S. M., & Hedetniemi, S. T. (2004). Roman domination in graphs. Discrete mathematics, 278(1-3), 11-22
  4. ReVelle, C. S., & Rosing, K. E. (2000). Defendens imperium romanum: a classical problem in military strategy. The American Mathematical Monthly, 107(7), 585-594
  5. Ahangar, H. A., Henning, M. A., Samodivkin, V., & Yero, I. G. (2016). Total Roman domination in graphs. Applicable Analysis and Discrete Mathematics, 10(2), 501-517
  6. Xing, H. M., Chen, X., & Chen, X. G. (2006). A note on Roman domination in graphs. Discrete mathematics, 306(24), 3338-3340
  7. Rad, N. J., & Rahbani, H. (2018). Some progress on the double Roman domination in graphs. Discussiones Mathematicae Graph Theory, 39(1), 41-53
  8. Abdollahzadeh Ahangar, H., Henning, M. A., Löwenstein, C., Zhao, Y., & Samodivkin, V. (2014). Signed Roman domination in graphs. Journal of Combinatorial Optimization, 27(2), 241-255
  9. Shanmugavelan, S., and Natarajan, C. (2021). On hop domination number of some generalized graph structures. Ural Mathematical Journal, 7.2(13), 121-135
  10. Jafari Rad, N., & Poureidi, A. (2019). On hop Roman domination in trees. Communications in Combinatorics and Optimization, 4(2), 201-208
  11. Casinillo, L., & Canoy Jr, S. (2025). Super Hop Roman Domination in Graphs. European Journal of Pure and Applied Mathematics, 18(4), 1-15
  12. Aradais, A., Cariaga, J. B., & Canoy Jr, S. (2025). Connected Roman Hop Dominating Functions in Graphs. European Journal of Pure and Applied Mathematics, 18(1), 5648-5648
  13. Cyman, J. (2007). The outer-connected domination number of a graph. Australasian journal of Combinatorics, 38, 35-46
  14. Natarajan, C., & Ayyaswamy, S. (2015). Hop domination in graphs-II. Versita, 23(2), 187-199
  15. Saromines, C. J., & Canoy Jr, S. (2022). Outer-connected hop dominating sets in graphs. European Journal of Pure and Applied Mathematics, 15(4), 1966-1981
  16. Cockayne, E. J., & Hedetniemi, S. T. (1977). Towards a theory of domination in graph. Networks Advanced Topics, 7, 247–261
  17. Casinillo, L. F., Lagumbay, E. T. & Abad, H. R. F. (2017). A note on connected interior domination in join and corona of two graphs. IOSR Journal of Mathematics, 13(2), 66–69
  18. Quadras, J., Mahizl, A. S. M., Rajasingh, I., & Rajan, R. S. (2015). Domination in certain chemical graphs. Journal of Mathematical Chemistry, 53(1), 207-219
  19. Casinillo, E. L., Casinillo, L. F., Valenzona, J. S., & Valenzona, D. L. (2020). On Triangular Secure Domination Number. InPrime: Indonesian Journal of Pure and Applied Mathematics, 2(2), 105-110
  20. Alcón, L. G. (2016). A note on path domination. Discussiones Mathematicae Graph Theory, 36, 1021–1034
  21. Casinillo, L. F. (2020). Odd and even repetition sequences of independent domination number. Notes on Number Theory and Discrete Mathematics, 26(1), 8-20
  22. Casinillo, L. F. (2020). New counting formula for dominating sets in path and cycle graphs. Journal of Fundamental Mathematics and Applications (JFMA), 3(2), 170-177
  23. Casinillo, L. F. (2023). A closer look at a path domination number in grid graphs. Journal of Fundamental Mathematics and Applications (JFMA), 6(1), 18-26

Last update:

No citation recorded.

Last update:

No citation recorded.