skip to main content

SOME PROPERTIES OF MODULAR TOPOLOGY IN THE ORLICZ SEQUENCE SPACE

*Haryadi Haryadi orcid scopus publons  -  Depertment of Computer Science, Universitas Muhammadiyah Palangkaraya, , Indonesia
Solikhin Solikhin  -  Department of Mathematics FSM Universitas Diponegoro, , Indonesia

Citation Format:
Abstract
In this article, we examined some properties of modular topology on the Orlicz sequence space. Discussions were conducted by constructing the topology on the sequence space using a modular neighborhood of zero. The neighborhood forms a local base that is balanced, absorbing, and symmetrical. Furthermore, if the Orlicz function that grows not soo rapidly, the modular neighborhood induces a topological vector space. We also characterize the modular boundedness, modular convergence, and modular closed set on the sequence space.

Fulltext View|Download
Keywords: modular; Orliz; sequence,;topology

Article Metrics:

  1. E. Malkowsky and V.I. Velic˘kovic`, “Topologies of some new sequence spaces, their duals, and the graphical representations of neighborhoods”, Topology and its Applications, vol. 158, 2011
  2. E. Kolk, “Topologies in generalized Orlicz sequence space”, Filomat, vol. 25, no. 4, pp. 191-211, 2011
  3. V.V. Chistyakov, “Modular metric space I: Basic concepts”, Nonlinear Analysys, Elsevier, vol. 72, pp. 1-12, 2010
  4. H. Abobakar and R.A. Ryan, “Modular Metric Space”, 2010
  5. E. Aydin, S. Kutukcu, “Modular a-metric space”, Journal of Science and Art, No. 3(40),
  6. pp. 423-432, 2017
  7. S.G. Tanha, A. Bodaghi and A.N. Motlagh, Some results in metric modular spaces, Int. J
  8. Nonlinear Anal. Appl., vol 12, no. 2, pp. 983-988, 2022
  9. M.M. Jabber and N.F. Al-Mayahi, “Weak* topology on modular space and some proper-
  10. ties”, Journal of Physics: Converence Series, vol. 1591, 2020
  11. D. Mukonda, L.K. Matindih and A.K. Manjika, “Some concepts of boundedness in mod-
  12. ular metric spaces”, Open Acc J Math Theor Phy., vol. 4, no. 1, pp. 35-39, 2023
  13. L. Chen, D. Chen and Y. Jiang, “Complex convexity of Orlicz Modular Sequence Space”,
  14. Journal of Function Spaces, vol. 2016, pp. 1-6. 2016
  15. A. Hajji, Modular Spaces Topology, Applied Mathematics, vol. 4, pp. 1296-1300, 2013
  16. V.V. Chistyakov, “A fixed point theorem for contractions in modular metric spaces”,
  17. arXiv: 1112.5561v1, 2018
  18. W.M. Kozlowski, “Advancements in fixed point theory in modular function spaces”, Arab
  19. J. Math, vol. 1, pp. 477–494, 2012
  20. W.M. Kozlowski, “On Modulated Topological Vector Space and Applications”, Bull. Aust
  21. Math. Soc., vol. 101, pp. 325–332, 2020
  22. E. Kaplan, N. Tas, S. Haque and N. Mlaki, “Multiplicative modular metric spaces and
  23. some fixed point results”, Journal of Inequalities and Applications, no. 54, 2025
  24. U. Mehmet and Y. Seyhmus, “Strong Convergence in Topological Spaces”, Method of
  25. Functional Analysis and Topology, vol. 24, no, 1, pp, 82-90, 2018
  26. M.A. Khamsi and W.M. Kozlowski, Fixed Point Theory in Modular Function Spaces
  27. New York: Springer, 2015
  28. M.A. Khamsi, J. Lang and O. Mendez, “Modular Topology on Vector Spaces”,
  29. arXiv:2504.15531v1, 2025
  30. J. Musielak, Orlicz Spaces and Modular Space, Springer Verlag: Berlin Heidelberg New
  31. York, 1983
  32. J.L. Kelley and I. Namioka, Linear Topological Spaces, Springer-Verlag: New-Nork
  33. Heildegerg Berlin, 1976
  34. N.U. Bostan and B.P. Varol, “Fixed Point Results in Modular b-Metric-like Spaces with
  35. an Application”, Axioms, Vol. 13(10), 2024,
  36. M.A. Krasnosel’skii and Y.B. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff
  37. Ltd.: Netherlands, 1961

Last update:

No citation recorded.

Last update:

No citation recorded.