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Abstract. Let G = (V(G), E(G)) be a simple, connected, and finite graph with vertex set
V(G) and edge set E(G). Let ¢:V(G) = {0,1,2} be an HRDF on G, and for each i €
{0,1,2}, let V; ={u€V(G):p(u) =i}. A function ¢ = (Vy,V,V,) is an outer-
connected hop Roman dominating function (OcHRDF) on G if for every v € V,, there
exists u € V, such that d;(v,u) = 2 and either V; = V(G) or the sub-graph (V) is
connected. The weigth of OcHRDF ¢ denoted by @¢'% (¢) and defined by @5 (@) =
Yvevc) ?(W) = |V1| + 2|V;|. The outer-connected hop Roman domination number of
Gis denoted by Venr(G) and is defined by Venr(G) =
min{@S"R (¢): ¢ is an OcHRDF on G}. Moreover, any OcHRDF ¢ on G with
Venr(G) = @R (@) is called 7,,z-function on G. In this paper, a new restricted
parameter of a hop Roman domination in graphs is introduced, and some combinatorial
properties are discussed..
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I. INTRODUCTION

Graph theory is one of the progressive branches of mathematics considering its variety of
interesting topics that discrete mathematicians are devoting to publish new results [1].
Dominating sets in graphs is one of the intriguing topics in graph theory that is fast growing
due to its interesting theoretic structures and application to other sciences [2]. Among the
parameters of domination in graphs, the Roman dominating function has captured the interests
of many mathematicians. Cockayne et al. [3] introduced the concept of Roman dominating set
in connection to a historical problem of defending the Roman empire as represented in [4]. Let
G be a connected and finite graph of order n = 1. A Roman dominating function (RDF) ¢ on
a G is a mapping from V(G) to {0, 1, 2}, that is, ¢: V(G) — {0, 1, 2} such that for every vertex
v € V(G) for which ¢ (v) = 0 is adjacent to at least one vertex u € V(G) for which ¢ (u) = 2.
The weight of an RDF function gon G denoted by wg (@) is defined by wg (@) = Xyev () (V)
and the Roman domination number on G denoted by yr(G) is defined by yr(G) =
min{w;(¢): @ is an RDF on G}, that is, the minimum weight of an RDF on graph G. So, any
RDF ¢ on G with yp(G) = ws () is called yg(G)-function on G. Apparently, there are several
research studies has emerged on the topic of Roman domination in graphs which can be found
in [5], [6], [7], [8]- A subset H € V(G) is called a hop dominating set of G if, for every vertex
in u€V(G)\H, there exists v€H such that d;(u, v)=0 or d;(u, v)=2. The smallest cardinality of
a hop dominating set of G is called the hop domination number denoted by y,(G). A hop
dominating set of cardinality y, (G) is called y, -set in G [9].
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Let ¢:V(G) - {0,1,2} be a function on G, and for each i €{0,1,2}, let V;={ue€
V(G): o(u) =i}. A hop Roman dominating function (HRDF) on G is a function ¢ =
(Vo, V1, V3) in which for every v € V, there exists v € V,, such that d;(u, v)=2 [10]. The weight
of an HRDF ¢ is the sum w*% (@) = Yvev) P(W) = |V1| + 2|V;|. The hop Roman domination
number of a graph G denoted by y, . (G) is the minimum weight of an HRDF on G, that is,

Ynr(G) = min{whR(p): ¢ is a HRDF on G}. Thus, every HRDF f on graph G with
o (@) = y4r(G) is called a ypg-function on G. Some interesting studies of hop Roman
domination can be found in [11], [12].

A subset O, € V(G) is called an outer-connected dominating set of G provided that for
0, =V(G) or (V(G)\S) is connected. The smallest cardinality of an outer-connected
dominating set of G is called the outer-connected domination number denoted by ¥.(G). An
outer-connected dominating set of cardinality y,.(G) is called ¥ -set in G [13]. A subset H S
V(G) is called a hop dominating set of G if, for every vertex in u€V(G)\H, there exists v€EH
such that dg(u, v)=0 or ds(u, v)=2. The smallest cardinality of a hop dominating set of G is
called the op domination number denoted by y, (G). A hop dominating set of cardinality y, (G)
is called y, -set in G [14]. A subset Oy, S V(G) is called an outer-connected hop dominating

set of G if for every vertex in u €V(G)\H, there exists vE€H such that d;(u, v)=0 or d(u, v)=2,
and either 0, = V(G) or the subgraph (V(G)\O},) is connected. The smallest cardinality of an
outer-connected hop dominating set of G is called the outer-connected hop domination number
denoted by 7., (G). An outer-connected hop dominating set of cardinality ¥, (G) is called 7 .-
setin G [15]. In that case, our working definition for this study is constructed. A function ¢ =
(Vo, V1, V3) is an outer-connected hop Roman dominating function (OcHRDF) on G if, for every
v € V,, there exists u € V, such that d; (v, u) = 2 and either V; = V(G) or the sub-graph (V)
is connected. The weigth of OcHRDF ¢ denoted by @5'%(¢) is defined by @§*R(¢) =
Yvev) P(W) = |V1| + 2|V;|. The outer-connected hop Roman domination number of G is
denoted by 7.,z(G) and is defined by 7.4z (G) = min{@S"R (¢): ¢ is an OcHRDF on G}. In
this case, any OcHRDF ¢ on G with 7.,z(G) = @5 (@) is called 7.,z-function on G.
Consider the graph G of order 5 in the figure below (Figure 1). Let ¢ = (V,, V4, V,) be an HRDF
on G such that Vy = {v3,v,,v5}, Vi = {v,}, and V, = {v,}. Note that the subgraph (V) is
connected. By construction, we have ¢ is an OcHRDF on G. Thus, ¥,z (G) = |V1| + 2|V,| =
3.

"

Figure 1. A graph G with ¥,z (G) = 3.

In this study, we need the following definitions of terms needed for the results. Let G =
(V(G), E(G)) be a simple, connected, and finite graph with vertex set V(G) and edge set E(G).
The order of graph G is given by |V (G)| and the size is given by |E (G)|. An open neighborhood
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of a vertex u € V(G) is defined as a set No(u) = N(w) ={v € V (G):uv € E(G)} and a
closed neighborhood is defined as Ng[u] = N[u] = {u}UN(u). In general, if we let S C
V (G), then the open neighborhood of set S is defined as N;(S) = N(S) = Uyes Ng(u), and
the closed neighborhood of set S is defined as N;[S] = N[S] = SUN(S). We define the
distance between two the vertices u and v in graph G by the length of the shortest path between
u and v, denoted by d; (u, v). In addition, the degree of a vertex v in G is defined as the number
of incident edges which is denoted by degg;(v). A path of order n > 1 is a graph denoted by
P, and can be described as a finite sequence of vertices that joins a sequence of edges. A cycle
graph denoted by C,, is a graph that consists of a single cycle in which the number of vertices
is connected in a closed chain. A complete graph denoted by K,, and defined as every pair of
distinct vertices is connected by a unique edge. A complete bipartite graph denoted by K, ,
where m,n > 2 is a special kind of bipartite graph and is defined as every vertex of the first
set is connected to every vertices of the second set. The star graph denoted by S,, of order n +
1 is obtained from K; + K,,. The fan graph denoted by E, is obtained from K; + P, where K,
is a complete graph of order 1 and P, is a path graph of order n. The order of fan graph F, is
n + 1. The wheel graph denoted by W, is of order n + 1 and is obtained from K; + C,. More
definitions in graph theory can be found in [16], [17], [18], [19], [20], [21], [22], [23]. In this
paper, we introduced a new restricted parameter of hop Roman domination in graphs and
obtained some mathematical theoretic results. Moreover, the exact values of outer-connected
hop Roman domination number for some classes of graphs were determined and some
characterizations were obtained.

I1. RESULTS

In this section, we present some interesting results of the outer-connected hop Roman
dominating function on a connected graph G of order n > 1.

Proposition 2.1. Let G be a connected graph. If ¢ = (Vy,, V1, V5) is a ¥epr-function on G, then
VLUV, is an outer-connected hop dominating set on G.

Proof: Assume that ¢ = (V, V4, V) is a 7.,g-function on graph G with order n = 1. Then ¢
is an OcHRDF on G. This implies that for each v € V, there exists u € V, such that d;(u, v) =
2 and either V; = V(G) or the sub-graph (V) is connected. Therefore, it follows that V; UV, is

an outer-connected hop dominating set in G. This completes the proof.
U

Remark 2.2. Let G be a connected graph of order n. If ¢ = (Vy, Vy,V,) is an OcHRDF on G
with |V0| = |V2|, then yChR(G) =n.

Proof: Suppose that ¢ = (V,,V;,V,) is an OcHRDF on G for which |Vy| = |V,|. In that case,
we obtain Your(G) = V4| + 2|V,| = |Vi| + |Vo| + Vo] = |V(G)| = n. This completes the
proof. L]

Theorem 2.3. Let ¢ = (Vy, V4, V,) be a ¥ pr-function on any connected graph G with order n.
Then V.nr (G) < nif and only if |V, < |Vy.
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Proof: Let ¢ = (Vy,V1,V,) be a ¥.pp-function on Gwith |[V(G)| =n > 1. Assume that
Venr(G) < n. By Remark 2.2, we have |V,| # |V,|. Now, suppose that |V,|>|V|. Then, it
follows that  ¥cnr(G) = @G (@) = V1| +2|Va| > [Vi| + Vo] + V| = V(@) =n, a
contradiction. Thus, it suffices to conclude that |V,| < |V,|. Conversely, assume that |V,| <
[Vo|. Then, it implies that For(G) = @SR (@) = |Vi| + 2|Vy| < V4| + Vo + [Vo| =
|V (G)| = n. This completes the proof. L]

Theorem 2.4. Let G be a connected graph with \V(G)| =n =1 and ¢ = (Vy,V1,V,) be an
OcHRDF on G. If ViUV, is a ¥op-set on G and |V, | is minimal, then ¢ = (Vy,V1,V,) be a Venr-
function on G.

Proof: Let ¢ = (Vy,V4,V,) be a OcHRDF on G with |[V(G)| = n = 1. Suppose that V; UV,
is a ¥.p-set on G and |V,| is minimal. Seeking for contradiction. Assume for a moment that
o =V, V,V,) is not a y.up-function on G. Then, there exists a ¥.g-function o =
(Wo, Wy, W3) on G such that 7cpr (G) = @ (0) = [W| + 2|Wy| < |V4| + 2|V, | = &% (¢)
where W, € V; and W, € V, such that |V,| is minimal. Consequently, |W;| < |V;]| and |W,| <
|V5|. Since W NW, = @ and V; NV, = @, it follows that |W; UW,| < |V;UV,|. And it implies
that |W;| + |W,| < |Vi| + |V3|, a contradiction since VUV, is a ¥.,g-set on G. Hence, it

suffices to say that ¢ = (V,,V;,V,) be a y.g-function on G. This completes the proof.
[

Theorem 2.5. Let G be a connected graph of order n > 1 and ¢ = (Vy,V1,V,) be a Vopr-
function on G. If Vi = @, then V, # Q is a Vop-set and Vopr (G) = 2V, (G).

Proof: Let ¢ = (V,,V;,V,) be a ¥.,r-function on G of order n = 1. Assume that V; = @. Then
by Theorem 2.1., V;UV, =V, is an outer-connected hop dominating set on G. Seeking for a
contradiction. Assume for a moment that V, is not a 7,-set on G. Let V;, be a #.,-set on G.
Then it follows that V, € V,. Define a function o = (W, Wy, W,) on G for which W, =
V(G)\V,, W, = @, and W, = V. It implies that a mapping o = (W,, W;, W,) is an OcHRDF
on G and it follows that @S"R(0) = 2|W;| < 2|V,| = @SR (@) = Fenr(G). This is a
contradiction since ¢ = (V,, V;, V) is a ¥ g-function on G. Therefore, it suffices to conclude
that V, is a .,-set on G and so, |V,| = ¥, (G). Moreover, we end up with ¥,z (G) = |V;| +
2|V, | = 2|V, | = 27.,(G). This completes the proof. ]

Theorem 2.6. Let G be a connected graph of order n > 1 and @ = (Vy, V1, V,) be a Vopr-
function on G. Then Vy = @ if and only if V, = @ and Y.,z (G) = n.

Proof: Let ¢ = (V,, V;,V,) be a ,z-function on G with |V(G)| = n = 1. Suppose that Vy =
@. Seeking for contradiction. Assume for a moment that V, # @. Let u € V,. Also, let W, =
Vo, Wy =V, U{u}, and W, = V,\{u}. This implies that o = (W, W;, W,) is an OcHRDF on
G. Tt is worth noting that @SR (o) = |Wy| + 2|W| = (V4| + 1) + 2(|V,| = 1) = |V4| +
2|1V, — 1 < @R (@) = 7.4r(G). This is a contradiction since @ = (Vo,V;,V5,) is a Pepg-
function on G. Hence, it suffices to conclude that V, = @. Moreover, V.z(G) = |V;|+
2|Vy| = |V4] = |[V(G)| = n. Conversely, let V, = @. In that case, it is easy to see that V, = @.
This completes the proof. 0
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The following results are the exact values of the outer-connected hop Roman domination
number of some special graphs.

Proposition 2.7. Let G = P, be a path of order n = 1. Then Y.,z (G) = n.

Proof: Assume that G = P, wheren = 1. Let ¢ = (V,, V;,V;) be a ¥ ,g-function on G. Clearly,
ifn =1or2, then ¥;4z(G) = |V;| = |[V(G)| = n and so, 7.,z(G) = 1 or 2, respectively. Let
n = 3. Then, there exists v € V, and u € V;, such that d; (v, u) = 2. In that case, the remaining
vertex w with dg(v,w) = 1 = d;(w, u) implies that w € V;. Since the subgraph induced by
V, is a trivial connected graph, i.e., (V,) = K;, it simply follows that ¥.,z(G) = 3. Now, let
n > 4. Seeking for contradiction. Assume for a moment that ¥.,z(G) < n. Then, by Remark
2.2, we have |Vy| # |V,|. Suppose that |V,| < |V;|. Then, we get V.,z(G) = |V;i| + 2|V,| >
[Vil + V2| + |[Vo] = |[V(G)| = n, a contradiction. On the other hand, suppose that |V,| > |V,|.
Then, there exists x € V, such that |[NZ(x)NV,| = 2. Since G is a path graph, then x € V, is
a cut vertex and so the sub-graph induced by V, is disconnected, a contradiction. Hence, it

suffices to  conclude that ¥.z(G) =n. This  completes the  proof.
O

Proposition 2.8. Let G = C,, be a cycle of order n = 3. Then, V.pr(G) = n.

Proof: Let @ = (V,,V1,V,) be a y.g-function on G = C,, with order n = 3. In view of

Proposition 2.7, it is clear that ¥.,z(G) = |V;| = |[V(G)| = n. This completes the proof.
L

Proposition 2.9. Let G = S, withn = 3. Then, J.3z(G) =n + 1.

Proof: Let ¢ = (V,, V1, V,) be a¥.pr-function on G = S,, with order n > 3. Then we have G =
K, + K, and |V(G)| = n + 1. Since (V(G)\V(K,)) = K, it is easy to check that V, = .
Therefore, V(G) = V; and so, ¥.pr(G) = | V1| = |V(G)| = n + 1. This completes the proof.
[

The following results gives an outer-connected hop Roman domination number lesser than the
order of some special graphs.

Proposition 2.10. Let G = K, ,, with m,n = 2. Then, ¥y (G) = 4.

Proof: Let G = K, = (U,V,E) be a complete bipartite graph where U and V denote the
partition, that is, |U| = m and |V| = n, and E is the edge set of G. Let ¢ = (V,,,V;,V,) be a
Vcnr-function on G. Then, choose any vertex u € U and v € V such that V, = {u, v}. Since
U\{u} € NZ(u) and V\{v} € NZ(v), it follows that V; = @ and V, = (UUV)\{w, v}. In this
case, the subgraph induced by V; is connected. Now, since any removal of vertex u or v in
V.UV, indicates a non-hop dominating set in G, it follows that by construction ¥.,z(G) =
Vil + 2|V, | = 2|{u, v}| = 2(2) = 4. This completes the proof.
L]

Proposition 2.11. I[f G = F, withn = 3, then V.3 (G) = 4.
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Proof: Assume that G = F,, for which n > 3. Then, |V(G)| =n+ 1and G = K; + P,. In that
case, there are 2 vertices of degree 2. Let ¢ = (V,, V;,V,) be a 7 ,gz-function on G. Then,
choose an arbitrary vertex v € V(G) with deg;(v) = 2 to be v € V,. Then, it follows that
IN:(v)NV(G)| = n — 2. It implies that for all u € V(G) withdg(v,u) =1, u € V;. Since
deg;(v) = 2, it means that |V;| = 2. Note that for any w € V; UV,, (V;UV,)\{w} is no longer
an outer-connected hop dominating set, hence V; UV, is already minimum. Hence, we end up
with Venr(G) = V1| + 2|V, = 2 + 2(1) = 4. This completes the proof.
(I

Proposition 2.12. [f G = W,, withn = 3, then ¥.4zr(G) = 5.

Proof: Assume that G =W, for which n>3. Then, |[V(G)|]=n+1 and V(G) =
V(K{)UV(C,). Choose an arbitrary vertex v € V(C,). Then, it follows that deg;(v) =3 and
IN2(WV)NV(G)| = |V(Cp)| — 3. Now, let ¢ = (V,, V4, V) be a J.pz-function on G. This means
that for each u € V(G) with d;(v,u) = 1 implies that u € V; and so, |V;| =3, [V,]| = 1. Itis
worth noting that for any w € V; UV, (V;UV,)\{w} is not an outer-connected hop dominating
set on G, hence V;UV, is the minimum outer-connected hop dominating set. Therefore, we
obtain  Y.pr(G) = |V4| + 2]V, =3+ 2(1) = 5. This completes the  proof.
L

One of the graphs that does not contain a distance of at least two on its vertices is a complete
graph. Hence, the following Theorem is immediate.

Proposition 2.13. If G = K, withn = 1, then ¥,z (G) = n.

Proof: Suppose that G = K,, for which n > 3. Let ¢ = (V,, V;,V,) be a ¥_,g-function on G.
Seeking for contradiction. Assume for a moment that ¥,z (G) < n. Then, it follows that V, #
@ and hence, V, # @. Let v € V,,. Then, there exists u € V, such that d;(v,u) =2. This is a

contradiction since G = K,,. Therefore, ¥.r(G) =n. This completes the proof.
L

The next result is a characterization of outer-connected hop Roman domination numbers with
small values.

Theorem 2.14. Let G be a connected graph with |V (G)| = n. Then the following holds:

i.  VYenr(G) =1lifandonlyifG = Ky, and

ii. Venr(G)=2ifandonlyifG = K,.
Proof: Assume that G is a connected graph with |V(G)| = n. Let ¢ = (V,, V3, V,) be a ¥.pr-
function on G. Suppose thaty.,z(G) = 1. Seeking for contradiction. Assume for a moment
that G # K;. Then |V(G)| > 1. Now, if |Vy| =1, then |[V,| = 1. In this case, we have
Yenr(G) = 2|V,| > 1, a contradiction. Moreover, if [V| = 0, then |V,| = 2. This follows that
Yenr(G) = |V4| = |V(G)| > 1, contrary to the assumption. The converse is easy. Hence, (i.)
holds. On the other hand, suppose thaty.,z(G) = 2. Then we have |V;| + 2|V,| = 2 and so,
|V,| < 1. Then consider the following cases:

Case 1. Let |V,| = 0.

In this case, |Vy| =0 and it follows that Y.,z(G) = V1| = |V(G)| = 2. Since G is
connected, it follows that G = K.
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Case 2. Let |V,] = 1.

Then |V;| = 0. Let V, = {u}. Then there exists v € V; such that d;(u, v) = 2. Now, letw €
Ng;(w)NNg(v). Since |V;| = 0, it means that V, = {u} is not a hop dominating set in G, a
contradiction. Hence, |V,| = 1 is not possible when V.,z(G) = 2.

And the converse is clear. Hence, (ii.) holds. []

The following remark is useful for our next result.
Remark 2.15. Let G be a connected graph. Then y(G) < V.nr(G).

The next theorem determines the lower and upper bound of the outer-connected hop Roman
domination number of a graph.

Theorem 2.16. Let G be a connected graph with order n. Then
max{Vcn(G), Yr(G)} < Venr(G) < min{n, 27, (G)}

Proof: Assume that G is a connected graph with |V(G)| = n. Let ¢ = (V,, V3, V,) be a ¥.pr-
function on G. By Proposition 2.1., V;UV, is an outer-connected hop dominating set on G.
Thus, it follows that 7., (G) < V| + |Va| < V4] + 2|V3| = @R (@) = $.nr(G). By Remark
2.15., we get Yr(G) < ¥epr(G). Thus, max{¥:(G),Yr(G)} < ¥cnr(G). On the other hand,
@ = (0,V(G),®) is a OcHRDF on G. And so, 7.4z (G) < @R (@) = |V4| + 2|V,| = V4| <
|[V(G)| = n. Now, if ¢ = (V,,,D,V,) is a ¥.,g-function G, then by Theorem 2.5., V, is a -
set on G, that is, |V,| = 7, (G). So, it follows that 7.,z(G) < B R (@) = |V4| + 2|V,| =
2|V,| = 27.,(G). Therefore, V.nr(G) < min{n, 2¥.,(G)} and so, max{y.,(G),yr(G)} <
Venr(G) < min{n, 27, (G)}. This completes the proof. ]

The next result is a characterization of an OcHRDF in the join of two connected graphs.

Theorem 2.17. Let G and H be connected graphs. Then ¢ = (V,,V;,V,) is an OcHRDF on
G + H if and only if ¢|; and ¢|y are OcHRDF on G and H, respectively.

Proof: Assume that ¢ = (Vy,V;,V,) is an OcHRDF on G + H. Let V¢ = V;NV(G) and V! =
V;NV(H) for each i € {0,1,2}. Then, ¢@|; = {VE&,VE, VEY and o|y = (VE,VE, VE}. Let
x € V. Then x € V. Since ¢ is an OcHRDF on G + H, there exists y € V, such that
deyn(x,y) = 2 and (V,) is connected. Since d;,y(x,w) = 1 forallw € V(H), it follows that
y € V§ and (V) is connected. Hence, ¢|; is an OcHRDF on G. By similar argument, it is also
concluded that |y is an OcHRDF on H. Conversely, assume that ¢|; and ¢ |y are OcHRDF
on G and H, respectively. For each j € {0,1,2}, let V; = VjGUVjH. Then ¢ = (Vy,V3,V,) is a
function on G. Let a € V. Then a € V§ or a € V{. Without loss of generality, consider
a € V€. Since ¢|g is an OcHRDF on G, there exists b € V' such that d;(a, b) = 2 and (V)
is connected. Now, since VjG c V; for all j € {0,1,2}, it implies that b € V, and (V;) is
connected. Therefore, it suffices to conclude that ¢ is an OcHRDF on G + H. This completes
the proof. L]

The following corollary and remark are direct consequence of Theorem 2.17.
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Corollary 2.18. Let G and H be connected graphs with |V(G)| =n and |V(H)| = m,
respectively. Then V.pr(G + H) = Vopr(G) + Venr(H).

Remark 2.19. Let G and H be complete graphs with |V(G)| =n and |V(H)| =m,
respectively. Then Y. pr(G + H) = n+m.

III. CONCLUSION

This paper has introduced a new parameter variation of the hop Roman dominating function
on a graph namely the outer-connected hop Roman dominating function. It is depicted that if
o =V, Vy,V,) is a y.ug-function on graph G, then V;UV, is an outer-connected hop
dominating set on G. It is concluded that if 7.,z(G) < n, then |V,| < |V,| and the converse is
also true. The outer-connected hop Roman domination number has been characterized with
respect to small values, e.g. 1 or 2. In addition, the outer-connected hop Roman domination
number of some special graphs has been determined and provided detailed proof. Moreover,
the bounds of outer-connected hop Roman domination numbers on a graph have been
investigated. For future research, it is interesting to explore the combinatorial properties of an
outer-connected hop Roman dominating function under some product operations in graphs.
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