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Abstract. Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a simple, connected, and finite graph with vertex set 

𝑉(𝐺) and edge set 𝐸(𝐺).  Let 𝜑: 𝑉(𝐺) → {0, 1, 2} be an HRDF on 𝐺, and for each 𝑖 ∈
{0, 1, 2}, let 𝑉𝑖 = {𝑢 ∈ 𝑉(𝐺): 𝜑(𝑢) = 𝑖}. A function 𝜑 = (𝑉0, 𝑉1, 𝑉2) is an outer-

connected hop Roman dominating function (OcHRDF) on 𝐺 if for every 𝑣 ∈ 𝑉0, there 

exists 𝑢 ∈ 𝑉2 such that 𝑑𝐺(𝑣, 𝑢) = 2 and either 𝑉1 = 𝑉(𝐺) or the sub-graph 〈𝑉0〉 is

connected. The weigth of OcHRDF 𝜑 denoted by 𝜔̃𝐺
𝑐ℎ𝑅(𝜑) and defined by 𝜔̃𝐺

𝑐ℎ𝑅(𝜑) =
∑ 𝜑(𝑣) = |𝑉1| + 2|𝑉2|𝑣∈𝑉(𝐺) . The outer-connected hop Roman domination number of

𝐺is denoted by 𝛾̃𝑐ℎ𝑅(𝐺) and is defined by 𝛾̃𝑐ℎ𝑅(𝐺) =
𝑚𝑖𝑛{𝜔̃𝐺

𝑐ℎ𝑅(𝜑): 𝜑 is an OcHRDF on 𝐺}. Moreover, any OcHRDF 𝜑 on 𝐺 with

𝛾̃𝑐ℎ𝑅(𝐺) = 𝜔̃𝐺
𝑐ℎ𝑅(𝜑) is called 𝛾̃𝑐ℎ𝑅-function on 𝐺.  In this paper, a new restricted

parameter of a hop Roman domination in graphs is introduced, and some combinatorial 

properties are discussed.. 
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I. INTRODUCTION

Graph theory is one of the progressive branches of mathematics considering its variety of 

interesting topics that discrete mathematicians are devoting to publish new results [1]. 

Dominating sets in graphs is one of the intriguing topics in graph theory that is fast growing 

due to its interesting theoretic structures and application to other sciences [2]. Among the 

parameters of domination in graphs, the Roman dominating function has captured the interests 

of many mathematicians. Cockayne et al. [3] introduced the concept of Roman dominating set 

in connection to a historical problem of defending the Roman empire as represented in [4]. Let 

𝐺 be a connected and finite graph of order 𝑛 ≥ 1.  A Roman dominating function (RDF) 𝜑 on 

a 𝐺 is a mapping from V(G) to {0, 1, 2}, that is, 𝜑: 𝑉(𝐺) → {0, 1, 2} such that for every vertex 

𝑣 ∈ 𝑉(𝐺) for which 𝜑(𝑣) = 0 is adjacent to at least one vertex 𝑢 ∈ 𝑉(𝐺) for which 𝜑(𝑢) = 2. 
The weight of an RDF function 𝜑on 𝐺 denoted by 𝜔𝐺(𝜑) is defined by ωG(𝜑) = ∑ 𝜑(𝑣)𝑣∈𝑉(𝐺)

and the Roman domination number on 𝐺 denoted by 𝛾𝑅(𝐺) is defined by 𝛾𝑅(𝐺) =
𝑚𝑖𝑛{𝜔𝐺(𝜑): 𝜑 𝑖𝑠 𝑎𝑛 𝑅𝐷𝐹 𝑜𝑛 𝐺}, that is, the minimum weight of an RDF on graph G. So, any 

RDF 𝜑 on 𝐺 with 𝛾𝑅(𝐺) = 𝜔𝐺(𝜑) is called 𝛾𝑅(𝐺)-function on 𝐺. Apparently, there are several 

research studies has emerged on the topic of Roman domination in graphs which can be found 

in [5], [6], [7], [8]. A subset 𝐻 ⊆ 𝑉(𝐺) is called a hop dominating set of G if, for every vertex 

in u∈V(G)\H, there exists  v∈H such that dG(u, v)=0 or dG(u, v)=2. The smallest cardinality of 

a hop dominating set of G is called the hop domination number denoted by γ
h
(G). A hop

dominating set of cardinality γ
h
(G) is called γ

h
-set in  G  [9].
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Let 𝜑: 𝑉(𝐺) → {0, 1, 2} be a function on 𝐺, and for each 𝑖 ∈ {0, 1, 2}, let 𝑉𝑖 = {𝑢 ∈
𝑉(𝐺): 𝜑(𝑢) = 𝑖}. A hop Roman dominating function (HRDF) on 𝐺 is a function 𝜑 =
(𝑉0, 𝑉1, 𝑉2) in which for every 𝑣 ∈ 𝑉0, there exists 𝑣 ∈ 𝑉0 such that dG(u, v)=2 [10]. The weight 

of an HRDF 𝜑 is the sum ω𝐺
ℎ𝑅(𝜑) = ∑ 𝜑(𝑣) = |𝑉1| + 2|𝑉2|𝑣∈𝑉(𝐺) . The hop Roman domination 

number of a graph 𝐺 denoted by γ
hR

(G) is the minimum weight of an HRDF on 𝐺, that is, 

𝛾ℎ𝑅(𝐺) = 𝑚𝑖𝑛{𝜔𝐺
ℎ𝑅(𝜑): 𝜑 𝑖𝑠 𝑎 𝐻𝑅𝐷𝐹 𝑜𝑛 𝐺}. Thus, every HRDF f on graph 𝐺 with 

𝜔𝐺
ℎ𝑅(𝜑) = 𝛾ℎ𝑅(𝐺) is called a 𝛾ℎ𝑅-function on 𝐺. Some interesting studies of hop Roman 

domination can be found in [11], [12]. 

 A subset 𝑂𝑐 ⊆ 𝑉(𝐺) is called an outer-connected dominating set of 𝐺 provided that for 

𝑂𝑐 = 𝑉(𝐺) or  〈𝑉(𝐺)\𝑆〉 is connected.  The smallest cardinality of an outer-connected 

dominating set of 𝐺 is called the outer-connected domination number denoted by 𝛾̃𝑐(𝐺). An 

outer-connected dominating set of cardinality 𝛾̃𝑐(𝐺) is called 𝛾̃𝑐-set in 𝐺 [13]. A subset 𝐻 ⊆
𝑉(𝐺) is called a hop dominating set of G if, for every vertex in u∈V(G)\H, there exists  v∈H 

such that dG(u, v)=0 or dG(u, v)=2. The smallest cardinality of a hop dominating set of G is 

called the hop domination number denoted by γ
h
(G). A hop dominating set of cardinality γ

h
(G) 

is called γ
h
-set in  G [14]. A subset 𝑂ℎ ⊆ 𝑉(𝐺) is called an outer-connected hop dominating 

set of G if for every vertex in u∈V(G)\H, there exists  v∈H such that dG(u, v)=0 or dG(u, v)=2, 

and either 𝑂ℎ = 𝑉(𝐺) or the subgraph 〈𝑉(𝐺)\𝑂ℎ〉 is connected. The smallest cardinality of an 

outer-connected hop dominating set of G is called the outer-connected hop domination number 

denoted by 𝛾̃𝑐ℎ(𝐺). An outer-connected hop dominating set of cardinality 𝛾̃𝑐ℎ(𝐺) is called 𝛾̃𝑐ℎ-

set in  G [15]. In that case, our working definition for this study is constructed. A function 𝜑 =
(𝑉0, 𝑉1, 𝑉2) is an outer-connected hop Roman dominating function (OcHRDF) on 𝐺 if, for every 

𝑣 ∈ 𝑉0, there exists 𝑢 ∈ 𝑉2 such that 𝑑𝐺(𝑣, 𝑢) = 2 and either 𝑉1 = 𝑉(𝐺) or the sub-graph 〈𝑉0〉 
is connected. The weigth of OcHRDF 𝜑 denoted by 𝜔̃𝐺

𝑐ℎ𝑅(𝜑) is defined by 𝜔̃𝐺
𝑐ℎ𝑅(𝜑) =

∑ 𝜑(𝑣) = |𝑉1| + 2|𝑉2|𝑣∈𝑉(𝐺) . The outer-connected hop Roman domination number of 𝐺 is 

denoted by 𝛾̃𝑐ℎ𝑅(𝐺) and is defined by 𝛾̃𝑐ℎ𝑅(𝐺) = 𝑚𝑖𝑛{𝜔̃𝐺
𝑐ℎ𝑅(𝜑): 𝜑 𝑖𝑠 𝑎𝑛 OcHRDF on 𝐺}. In 

this case, any OcHRDF 𝜑 on 𝐺 with 𝛾̃𝑐ℎ𝑅(𝐺) = 𝜔̃𝐺
𝑐ℎ𝑅(𝜑) is called 𝛾̃𝑐ℎ𝑅-function on 𝐺. 

Consider the graph 𝐺 of order 5 in the figure below (Figure 1). Let 𝜑 = (𝑉0, 𝑉1, 𝑉2) be an HRDF 

on G such that 𝑉0 = {𝑣3, 𝑣4, 𝑣5}, 𝑉1 = {𝑣2}, and 𝑉2 = {𝑣1}. Note that the subgraph 〈𝑉0〉 is 

connected. By construction, we have 𝜑 is an OcHRDF on G. Thus, 𝛾̃𝑐ℎ𝑅(𝐺) = |𝑉1| + 2|𝑉2| =
3. 
 

 
Figure 1. A graph 𝐺 with 𝛾̃𝑐ℎ𝑅(𝐺) = 3. 

 

In this study, we need the following definitions of terms needed for the results. Let 𝐺 =
(𝑉(𝐺), 𝐸(𝐺)) be a simple, connected, and finite graph with vertex set 𝑉(𝐺) and edge set 𝐸(𝐺). 

The order of graph 𝐺 is given by |𝑉(𝐺)| and the size is given by |𝐸(𝐺)|. An open neighborhood 
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of a vertex 𝑢 ∈ 𝑉(𝐺) is defined as a set 𝑁𝐺(𝑢) =  𝑁(𝑢) = {𝑣 ∈ 𝑉 (𝐺): 𝑢𝑣 ∈ 𝐸(𝐺)} and a 

closed neighborhood is defined as 𝑁𝐺[𝑢] =  𝑁[𝑢] = {𝑢}⋃𝑁(𝑢). In general, if we let 𝑆 ⊆
𝑉 (𝐺), then the open neighborhood of set 𝑆 is defined as 𝑁𝐺(𝑆) =  𝑁(𝑆) = ⋃𝑢∈𝑆 𝑁𝐺(𝑢), and 

the closed neighborhood of set 𝑆 is defined as 𝑁𝐺[𝑆]  =  𝑁[𝑆]  =  𝑆⋃𝑁(𝑆). We define the 

distance between two the vertices 𝑢 and 𝑣 in graph 𝐺 by the length of the shortest path between 

𝑢 and 𝑣, denoted by 𝑑𝐺(𝑢, 𝑣). In addition, the degree of a vertex 𝑣 in 𝐺 is defined as the number 

of incident edges which is denoted by 𝑑𝑒𝑔𝐺(𝑣). A path of order 𝑛 ≥ 1 is a graph denoted by 

𝑃𝑛 and can be described as a finite sequence of vertices that joins a sequence of edges. A cycle 

graph denoted by 𝐶𝑛 is a graph that consists of a single cycle in which the number of vertices 

is connected in a closed chain. A complete graph denoted by 𝐾𝑛 and defined as every pair of 

distinct vertices is connected by a unique edge. A complete bipartite graph denoted by 𝐾𝑚,𝑛 

where 𝑚, 𝑛 ≥ 2 is a special kind of bipartite graph and is defined as every vertex of the first 

set is connected to every vertices of the second set. The star graph denoted by 𝑆𝑛 of order n +
1 is obtained from 𝐾1 + 𝐾̅𝑛. The fan graph denoted by 𝐹𝑛 is obtained from 𝐾1 + 𝑃𝑛 where  𝐾1 

is a complete graph of order 1 and  𝑃𝑛 is a path graph of order n. The order of fan graph  𝐹𝑛 is 

n + 1. The wheel graph denoted by 𝑊𝑛 is of order n + 1 and is obtained from 𝐾1 + 𝐶𝑛. More 

definitions in graph theory can be found in [16], [17], [18], [19], [20], [21], [22], [23]. In this 

paper, we introduced a new restricted parameter of hop Roman domination in graphs and 

obtained some mathematical theoretic results. Moreover, the exact values of outer-connected 

hop Roman domination number for some classes of graphs were determined and some 

characterizations were obtained. 

      

II. RESULTS 

 

 In this section, we present some interesting results of the outer-connected hop Roman 

dominating function on a connected graph 𝐺 of order 𝑛 ≥ 1.  
 

Proposition 2.1. Let 𝐺 be a connected graph. If 𝜑 = (𝑉0, 𝑉1, 𝑉2) is a 𝛾̃𝑐ℎ𝑅-function on 𝐺, then 

𝑉1⋃𝑉2 is an outer-connected hop dominating set on 𝐺. 

 

Proof: Assume that 𝜑 = (V0, V1, V2) is a 𝛾̃𝑐ℎ𝑅-function on graph G with order 𝑛 ≥ 1. Then 𝜑  

is an OcHRDF on 𝐺. This implies that for each 𝑣 ∈ 𝑉0 there exists  𝑢 ∈ 𝑉2 such that 𝑑𝐺(𝑢, 𝑣) =
2 and either 𝑉1 = 𝑉(𝐺) or the sub-graph 〈𝑉0〉 is connected. Therefore, it follows that 𝑉1⋃𝑉2 is 

an outer-connected hop dominating set in 𝐺. This completes the proof.                                                                                                   
  

 

Remark 2.2. Let 𝐺 be a connected graph of order 𝑛. If 𝜑 = (𝑉0, 𝑉1, 𝑉2) is an OcHRDF on 𝐺 

with |𝑉0| = |𝑉2|, then 𝛾̃𝑐ℎ𝑅(𝐺) = 𝑛. 

 

Proof: Suppose that 𝜑 = (𝑉0, 𝑉1, 𝑉2) is an OcHRDF on 𝐺 for which |𝑉0| = |𝑉2|. In that case, 

we obtain 𝛾̃𝑐ℎ𝑅(𝐺) = |𝑉1| + 2|𝑉2| = |𝑉1| + |𝑉2| + |𝑉0| = |𝑉(𝐺)| = 𝑛. This completes the 

proof.                                                                                              

 

Theorem 2.3. Let 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾̃𝑐ℎ𝑅-function on any connected graph 𝐺 with order 𝑛. 

Then 𝛾̃𝑐ℎ𝑅(𝐺) < 𝑛 if and only if |𝑉2| < |𝑉0|. 
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Proof: Let 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾̃𝑐ℎ𝑅-function on 𝐺with |𝑉(𝐺)| = 𝑛 ≥ 1. Assume that 

𝛾̃𝑐ℎ𝑅(𝐺) < 𝑛. By Remark 2.2, we have |𝑉2| ≠ |𝑉0|. Now, suppose that |V2|>|V0|. Then, it 

follows that 𝛾̃𝑐ℎ𝑅(𝐺) = 𝜔̃𝐺
𝑐ℎ𝑅(𝜑) = |𝑉1| + 2|𝑉2| > |𝑉1| + |𝑉2| + |𝑉0| = |𝑉(𝐺)| = 𝑛, a 

contradiction. Thus, it suffices to conclude that |𝑉2| < |𝑉0|. Conversely, assume that |𝑉2| <
|𝑉0|. Then, it implies that 𝛾̃𝑐ℎ𝑅(𝐺) = 𝜔̃𝐺

𝑐ℎ𝑅(𝜑) = |𝑉1| + 2|𝑉2| < |𝑉1| + |𝑉2| + |𝑉0| =
|𝑉(𝐺)| = 𝑛. This completes the proof.                                   

 

Theorem 2.4. Let 𝐺 be a connected graph with |𝑉(𝐺)| = 𝑛 ≥ 1 and 𝜑 = (𝑉0, 𝑉1, 𝑉2) be an 

OcHRDF on 𝐺. If 𝑉1⋃𝑉2 is a 𝛾̃𝑐ℎ-set on 𝐺 and |𝑉2| is minimal, then 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾̃𝑐ℎ𝑅-

function on 𝐺. 

 

Proof: Let 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a OcHRDF on 𝐺 with |𝑉(𝐺)| = 𝑛 ≥ 1. Suppose that 𝑉1⋃𝑉2 

is a 𝛾̃𝑐ℎ-set on 𝐺 and |𝑉2| is minimal. Seeking for contradiction. Assume for a moment that 

𝜑 = (𝑉0, 𝑉1, 𝑉2) is not a 𝛾̃𝑐ℎ𝑅-function on 𝐺. Then, there exists a 𝛾̃𝑐ℎ𝑅-function 𝜎 =
(𝑊0, 𝑊1, 𝑊2) on 𝐺 such that 𝛾̃𝑐ℎ𝑅(𝐺) = 𝜔̃𝐺

𝑐ℎ𝑅(𝜎) = |𝑊1| + 2|𝑊2| < |𝑉1| + 2|𝑉2| = 𝜔̃𝐺
𝑐ℎ𝑅(𝜑) 

where 𝑊1 ⊆ 𝑉1 and 𝑊2 ⊆ 𝑉2 such that |𝑉2| is minimal. Consequently, |𝑊1| ≤ |𝑉1| and |𝑊2| ≤
|𝑉2|. Since 𝑊1⋂𝑊2 = ∅ and 𝑉1⋂𝑉2 = ∅, it follows that |𝑊1⋃𝑊2| < |𝑉1⋃𝑉2|. And it implies 

that |𝑊1| + |𝑊2| < |𝑉1| + |𝑉2|, a contradiction since 𝑉1⋃𝑉2 is a 𝛾̃𝑐ℎ𝑅-set on 𝐺. Hence, it 

suffices to say that 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾̃𝑐ℎ𝑅-function on 𝐺. This completes the proof.                               
 

 

Theorem 2.5. Let 𝐺 be a connected graph of order 𝑛 ≥ 1 and 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾̃𝑐ℎ𝑅-

function on 𝐺. If 𝑉1 = ∅, then 𝑉2 ≠ ∅ is a 𝛾̃𝑐ℎ-set and 𝛾̃𝑐ℎ𝑅(𝐺) = 2𝛾̃𝑐ℎ(𝐺). 

 

Proof: Let 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾̃𝑐ℎ𝑅-function on 𝐺 of order 𝑛 ≥ 1. Assume that 𝑉1 = ∅. Then 

by Theorem 2.1., 𝑉1⋃𝑉2 = 𝑉2 is an outer-connected hop dominating set on 𝐺. Seeking for a 

contradiction. Assume for a moment that 𝑉2 is not a 𝛾̃𝑐ℎ-set on 𝐺. Let 𝑉2̃ be a 𝛾̃𝑐ℎ-set on 𝐺. 

Then it follows that V2̃ ⊂ V2. Define a function σ = (𝑊0, 𝑊1, 𝑊2) on 𝐺 for which 𝑊0 =
𝑉(𝐺)\𝑉2̃, 𝑊1 = ∅, and 𝑊2 = 𝑉2̃. It implies that a mapping 𝜎 = (𝑊0, 𝑊1, 𝑊2) is an OcHRDF 

on 𝐺 and it follows that 𝜔̃𝐺
𝑐ℎ𝑅(𝜎) = 2|𝑊2| < 2|𝑉2| = 𝜔̃𝐺

𝑐ℎ𝑅(𝜑) = 𝛾̃𝑐ℎ𝑅(𝐺). This is a 

contradiction since 𝜑 = (𝑉0, 𝑉1, 𝑉2) is a 𝛾̃𝑐ℎ𝑅-function on 𝐺. Therefore, it suffices to conclude 

that 𝑉2 is a 𝛾̃𝑐ℎ-set on 𝐺 and so, |𝑉2| = 𝛾̃𝑐ℎ(𝐺). Moreover, we end up with 𝛾̃𝑐ℎ𝑅(𝐺) = |𝑉1| +
2|𝑉2| = 2|𝑉2| = 2𝛾̃𝑐ℎ(𝐺). This completes the proof.                                                                              

 

Theorem 2.6. Let 𝐺 be a connected graph of order 𝑛 ≥ 1 and 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾̃𝑐ℎ𝑅-

function on 𝐺. Then 𝑉0 = ∅ if and only if V2 = ∅ and 𝛾̃𝑐ℎ𝑅(𝐺) = 𝑛. 

 

Proof: Let 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾̃𝑐ℎ𝑅-function on 𝐺 with |𝑉(𝐺)| = 𝑛 ≥ 1. Suppose that 𝑉0 =
∅. Seeking for contradiction. Assume for a moment that 𝑉2 ≠ ∅. Let 𝑢 ∈ 𝑉2. Also, let 𝑊0 =
𝑉0, 𝑊1 = 𝑉1⋃{𝑢},  and 𝑊2 = 𝑉2\{𝑢}. This implies that 𝜎 = (𝑊0, 𝑊1, 𝑊2)  is an OcHRDF on 

𝐺. It is worth noting that 𝜔̃𝐺
𝑐ℎ𝑅(𝜎) = |𝑊1| + 2|𝑊2| = (|𝑉1| + 1) + 2(|𝑉2| − 1) = |𝑉1| +

2|𝑉2| − 1 ≤ 𝜔̃𝐺
𝑐ℎ𝑅(𝜑) = 𝛾̃𝑐ℎ𝑅(𝐺). This is a contradiction since 𝜑 = (𝑉0, 𝑉1, 𝑉2) is a 𝛾̃𝑐ℎ𝑅-

function on 𝐺. Hence, it suffices to conclude that 𝑉2 = ∅. Moreover,  𝛾̃𝑐ℎ𝑅(𝐺) = |𝑉1| +
2|𝑉2| = |𝑉1| = |𝑉(𝐺)| = 𝑛. Conversely, let 𝑉2 = ∅. In that case, it is easy to see that 𝑉0 = ∅. 

This completes the proof.                                                                                                                                                  
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The following results are the exact values of the outer-connected hop Roman domination 

number of some special graphs.   

 

Proposition 2.7. Let 𝐺 = 𝑃𝑛 be a path of order 𝑛 ≥ 1. Then 𝛾̃𝑐ℎ𝑅(𝐺) = 𝑛. 
 

Proof: Assume that 𝐺 = 𝑃𝑛 where 𝑛 ≥ 1. Let 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾̃𝑐ℎ𝑅-function on 𝐺. Clearly, 

if 𝑛 = 1 or 2, then 𝛾̃𝑐ℎ𝑅(𝐺) = |𝑉1| = |𝑉(𝐺)| = 𝑛 and so, 𝛾̃𝑐ℎ𝑅(𝐺) = 1 or 2, respectively. Let 

𝑛 = 3. Then, there exists 𝑣 ∈ 𝑉2 and 𝑢 ∈ 𝑉0 such that 𝑑𝐺(𝑣, 𝑢) = 2. In that case, the remaining 

vertex 𝑤 with 𝑑𝐺(𝑣, 𝑤) = 1 = 𝑑𝐺(𝑤, 𝑢) implies that 𝑤 ∈ 𝑉1. Since the subgraph induced by 

𝑉0 is a trivial connected graph, i.e., 〈𝑉0〉 = 𝐾1, it simply follows that 𝛾̃𝑐ℎ𝑅(𝐺) = 3. Now,  let 

𝑛 ≥ 4. Seeking for contradiction. Assume for a moment that 𝛾̃𝑐ℎ𝑅(𝐺) < 𝑛. Then, by Remark 

2.2, we have  |V0| ≠ |V2|. Suppose that |V0| < |V2|. Then, we get  𝛾̃𝑐ℎ𝑅(𝐺) = |𝑉1| + 2|𝑉2| >
|𝑉1| + |𝑉2| + |𝑉0| = |𝑉(𝐺)| = 𝑛, a contradiction. On the other hand, suppose that |V0| > |V2|. 
Then, there exists  𝑥 ∈ 𝑉2 such that  |𝑁𝐺

2(𝑥)⋂𝑉0| = 2. Since  𝐺 is a path graph, then  𝑥 ∈ 𝑉2 is 

a cut vertex and so the sub-graph induced by 𝑉0 is disconnected, a contradiction. Hence, it 

suffices to conclude that 𝛾̃𝑐ℎ𝑅(𝐺) = 𝑛. This completes the proof.                                                                                                                                    
    

 

Proposition 2.8. Let 𝐺 = 𝐶𝑛 be a cycle of order 𝑛 ≥ 3. Then, 𝛾̃𝑐ℎ𝑅(𝐺) = 𝑛.    
 

Proof: Let 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾̃𝑐ℎ𝑅-function on 𝐺 = 𝐶𝑛 with order 𝑛 ≥ 3. In view of 

Proposition 2.7, it is clear that 𝛾̃𝑐ℎ𝑅(𝐺) = |𝑉1| = |𝑉(𝐺)| = 𝑛. This completes the proof.                                                                                                                         
 

 

Proposition 2.9. Let 𝐺 = 𝑆𝑛 with 𝑛 ≥ 3. Then, 𝛾̃𝑐ℎ𝑅(𝐺) = 𝑛 + 1.     
 

Proof: Let 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾̃𝑐ℎ𝑅-function on 𝐺 = 𝑆𝑛 with order 𝑛 ≥ 3. Then we have 𝐺 =
𝐾1 + 𝐾𝑛

̅̅̅̅  and |𝑉(𝐺)| = 𝑛 + 1. Since 〈𝑉(𝐺)\𝑉(𝐾1)〉 = 𝐾𝑛
̅̅̅̅ , it is easy to check that V2 = ∅. 

Therefore, 𝑉(𝐺) = V1 and so, 𝛾̃𝑐ℎ𝑅(𝐺) = |V1| = |𝑉(𝐺)| = 𝑛 + 1. This completes the proof.                                                                                          
 

 

The following results gives an outer-connected hop Roman domination number lesser than the 

order of some special graphs. 

 

Proposition 2.10. Let 𝐺 = 𝐾𝑚,𝑛 with 𝑚, 𝑛 ≥ 2. Then, 𝛾̃𝑐ℎ𝑅(𝐺) = 4. 
 

Proof: Let 𝐺 = 𝐾𝑚,𝑛 = (𝑈, 𝑉, 𝐸) be a complete bipartite graph where  𝑈 and 𝑉 denote the 

partition, that is, |𝑈| = 𝑚 and |𝑉| = 𝑛, and  𝐸 is the edge set of 𝐺. Let 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 

𝛾̃𝑐h𝑅-function on 𝐺. Then, choose any vertex 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 such that 𝑉2 = {𝑢, 𝑣}. Since 

𝑈\{𝑢} ⊆ 𝑁𝐺
2(𝑢) and 𝑉\{𝑣} ⊆ 𝑁𝐺

2(𝑣), it follows that 𝑉1 = ∅ and 𝑉0 = (U⋃V)\{𝑢, 𝑣}. In this 

case, the subgraph induced by 𝑉0 is connected.  Now, since any removal of vertex 𝑢 or 𝑣 in 

𝑉1⋃𝑉2 indicates a non-hop dominating set in 𝐺, it follows that by construction 𝛾̃𝑐h𝑅(𝐺) =
|𝑉1| + 2|𝑉2| = 2|{𝑢, 𝑣}| = 2(2) = 4. This completes the proof.                                                                           
 

 

Proposition 2.11. If 𝐺 = 𝐹𝑛 with 𝑛 ≥ 3, then 𝛾̃𝑐ℎ𝑅(𝐺) = 4. 
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Proof: Assume that 𝐺 = 𝐹𝑛 for which 𝑛 ≥ 3. Then, |𝑉(𝐺)| = 𝑛 + 1 and 𝐺 = 𝐾1 + 𝑃𝑛.  In that 

case, there are 2 vertices of degree 2. Let 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾̃𝑐ℎ𝑅-function on 𝐺. Then, 

choose an arbitrary vertex 𝑣 ∈ 𝑉(𝐺) with 𝑑𝑒𝑔𝐺(𝑣) = 2 to be 𝑣 ∈ 𝑉2. Then, it follows that 

|𝑁𝐺
2(𝑣)⋂𝑉(𝐺)| = 𝑛 − 2. It implies that for all 𝑢 ∈ 𝑉(𝐺) with 𝑑𝐺(𝑣, 𝑢) = 1, 𝑢 ∈ 𝑉1. Since  

𝑑𝑒𝑔𝐺(𝑣) = 2, it means that |𝑉1| = 2. Note that for any 𝑤 ∈ 𝑉1⋃𝑉2, (𝑉1⋃𝑉2)\{𝑤} is no longer 

an outer-connected hop dominating set, hence 𝑉1⋃𝑉2 is already minimum. Hence, we end up 

with 𝛾̃𝑐ℎ𝑅(𝐺) = |𝑉1| + 2|𝑉2| = 2 + 2(1) = 4. This completes the proof.                                                             
 

 

Proposition 2.12. If 𝐺 = 𝑊𝑛 with 𝑛 ≥ 3, then 𝛾̃𝑐ℎ𝑅(𝐺) = 5. 
 

Proof: Assume that 𝐺 = 𝑊𝑛 for which 𝑛 ≥ 3. Then, |𝑉(𝐺)| = 𝑛 + 1 and 𝑉(𝐺) =
𝑉(𝐾1)⋃𝑉(𝐶𝑛). Choose an arbitrary vertex 𝑣 ∈ 𝑉(𝐶𝑛). Then, it follows that 𝑑𝑒𝑔𝐺(𝑣) =3 and 

|𝑁𝐺
2(𝑣)⋂𝑉(𝐺)| = |𝑉(𝐶𝑛)| − 3. Now, let 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾̃𝑐ℎ𝑅-function on 𝐺. This means 

that for each 𝑢 ∈ 𝑉(𝐺) with 𝑑𝐺(𝑣, 𝑢) = 1 implies that 𝑢 ∈ 𝑉1 and so, |𝑉1| = 3, |𝑉2| = 1. It is 

worth noting that for any 𝑤 ∈ 𝑉1⋃𝑉2, (𝑉1⋃𝑉2)\{𝑤} is not an outer-connected hop dominating 

set on 𝐺, hence 𝑉1⋃𝑉2 is the minimum outer-connected hop dominating set. Therefore, we 

obtain 𝛾̃𝑐ℎ𝑅(𝐺) = |𝑉1| + 2|𝑉2| = 3 + 2(1) = 5. This completes the proof.                                                                   
 

 

One of the graphs that does not contain a distance of at least two on its vertices is a complete 

graph. Hence, the following Theorem is immediate. 

 

Proposition 2.13. If 𝐺 = 𝐾𝑛 with 𝑛 ≥ 1, then 𝛾̃𝑐ℎ𝑅(𝐺) = 𝑛. 
 

Proof: Suppose that 𝐺 = 𝐾𝑛 for which 𝑛 ≥ 3. Let 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾̃𝑐ℎ𝑅-function on 𝐺. 

Seeking for contradiction. Assume for a moment that 𝛾̃𝑐ℎ𝑅(𝐺) < 𝑛. Then, it follows that 𝑉0 ≠
∅ and hence, 𝑉2 ≠ ∅. Let 𝑣 ∈ 𝑉0. Then, there exists 𝑢 ∈ 𝑉2 such that 𝑑𝐺(𝑣, 𝑢) =2. This is a 

contradiction since 𝐺 = 𝐾𝑛. Therefore, 𝛾̃𝑐ℎ𝑅(𝐺) = 𝑛. This completes the proof.                                                                                                    
 

            

The next result is a characterization of outer-connected hop Roman domination numbers with 

small values. 

 

Theorem 2.14. Let G be a connected graph with |𝑉(𝐺)| = 𝑛. Then the following holds: 

i.   𝛾̃𝑐ℎ𝑅(𝐺) = 1 if and only if 𝐺 = 𝐾1; and  

ii.  𝛾̃𝑐ℎ𝑅(𝐺) = 2 if and only if 𝐺 = 𝐾2. 

Proof: Assume that 𝐺 is a connected graph with |𝑉(𝐺)| = 𝑛. Let 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾̃𝑐ℎ𝑅-

function on 𝐺. Suppose that 𝛾̃𝑐ℎ𝑅(𝐺) = 1. Seeking for contradiction. Assume for a moment 

that 𝐺 ≠ 𝐾1. Then |𝑉(𝐺)| > 1. Now, if |𝑉0| ≥ 1, then |𝑉2| ≥ 1. In this case, we have 

 𝛾̃𝑐ℎ𝑅(𝐺) ≥ 2|𝑉2| > 1, a contradiction. Moreover, if |𝑉0| = 0, then |𝑉2| = 2. This follows that 

 𝛾̃𝑐ℎ𝑅(𝐺) = |𝑉1| = |𝑉(𝐺)| > 1, contrary to the assumption. The converse is easy. Hence,  (i.) 

holds. On the other hand, suppose that 𝛾̃𝑐ℎ𝑅(𝐺) = 2. Then we have |𝑉1| + 2|𝑉2| = 2 and so, 

|𝑉2| ≤ 1. Then consider the following cases: 

Case 1. Let |𝑉2| = 0. 

In this case, |𝑉0| = 0 and it follows that  𝛾̃𝑐ℎ𝑅(𝐺) = |𝑉1| = |𝑉(𝐺)| = 2. Since G is 

connected, it follows that 𝐺 = 𝐾2. 
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Case 2. Let |𝑉2| = 1. 

Then |𝑉1| = 0. Let 𝑉2 = {𝑢}. Then there exists 𝑣 ∈ 𝑉0 such that 𝑑𝐺(𝑢, 𝑣) = 2. Now, let 𝑤 ∈
𝑁𝐺(𝑢)⋂𝑁𝐺(𝑣). Since |𝑉1| = 0, it means that 𝑉2 = {𝑢} is not a hop dominating set in 𝐺, a 

contradiction. Hence, |𝑉2| = 1 is not possible when  𝛾̃𝑐ℎ𝑅(𝐺) = 2.  

And the converse is clear. Hence,  (ii.) holds.                                                            

 

The following remark is useful for our next result. 

 

Remark 2.15. Let 𝐺 be a connected graph. Then 𝛾𝑅(𝐺) ≤ 𝛾̃𝑐ℎ𝑅(𝐺). 

 

The next theorem determines the lower and upper bound of the outer-connected hop Roman 

domination number of a graph. 

 

Theorem 2.16. Let 𝐺 be a connected graph with order 𝑛. Then 

𝑚𝑎𝑥{𝛾̃𝑐ℎ(𝐺), 𝛾𝑅(𝐺)} ≤ 𝛾̃𝑐ℎ𝑅(𝐺) ≤ 𝑚𝑖𝑛{𝑛, 2𝛾̃𝑐ℎ(𝐺)} 

 

Proof: Assume that 𝐺 is a connected graph with |𝑉(𝐺)| = 𝑛. Let 𝜑 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾̃𝑐ℎ𝑅-

function on 𝐺. By Proposition 2.1., 𝑉1⋃𝑉2 is an outer-connected hop dominating set on 𝐺. 
Thus, it follows that 𝛾̃𝑐ℎ(𝐺) ≤ |𝑉1| + |𝑉2| ≤ |𝑉1| + 2|𝑉2| = 𝜔̃𝐺

𝑐ℎ𝑅(𝜑) = 𝛾̃𝑐ℎ𝑅(𝐺). By Remark 

2.15., we get 𝛾𝑅(𝐺) ≤ 𝛾̃𝑐ℎ𝑅(𝐺). Thus, 𝑚𝑎𝑥{𝛾̃𝑐ℎ(𝐺), 𝛾𝑅(𝐺)} ≤ 𝛾̃𝑐ℎ𝑅(𝐺). On the other hand,  

𝜑 = (∅, 𝑉(𝐺), ∅) is a OcHRDF on 𝐺. And so, 𝛾̃𝑐ℎ𝑅(𝐺) ≤ 𝜔̃𝐺
𝑐ℎ𝑅(𝜑) = |𝑉1| + 2|𝑉2| = |𝑉1| ≤

|𝑉(𝐺)| = 𝑛. Now, if 𝜑 = (𝑉0, ∅, 𝑉2) is a 𝛾̃𝑐ℎ𝑅-function 𝐺, then by Theorem 2.5., 𝑉2 is a 𝛾̃𝑐ℎ-

set on 𝐺, that is, |𝑉2| = 𝛾̃𝑐ℎ(𝐺). So, it follows that  𝛾̃𝑐ℎ𝑅(𝐺) ≤ 𝜔̃𝐺
𝑐ℎ𝑅(𝜑) = |𝑉1| + 2|𝑉2| =

2|𝑉2| = 2𝛾̃𝑐ℎ(𝐺). Therefore, 𝛾̃𝑐ℎ𝑅(𝐺) ≤ 𝑚𝑖𝑛{𝑛, 2𝛾̃𝑐ℎ(𝐺)} and so, 𝑚𝑎𝑥{𝛾̃𝑐ℎ(𝐺), 𝛾𝑅(𝐺)} ≤
𝛾̃𝑐ℎ𝑅(𝐺) ≤ 𝑚𝑖𝑛{𝑛, 2𝛾̃𝑐ℎ(𝐺)}. This completes the proof.                                             

 

The next result is a characterization of an OcHRDF in the join of two connected graphs. 

 

Theorem 2.17. Let 𝐺 and 𝐻 be connected graphs. Then 𝜑 = (𝑉0, 𝑉1, 𝑉2) is an OcHRDF on 

𝐺 + 𝐻 if and only if 𝜑|𝐺  and 𝜑|𝐻 are OcHRDF on 𝐺 and 𝐻, respectively.  

 

Proof: Assume that 𝜑 = (𝑉0, 𝑉1, 𝑉2) is an OcHRDF on 𝐺 + 𝐻. Let 𝑉𝑖
𝐺 = 𝑉𝑖⋂𝑉(𝐺) and 𝑉𝑖

𝐻 =
𝑉𝑖⋂𝑉(𝐻) for each 𝑖 ∈ {0, 1, 2}. Then, 𝜑|𝐺 = {𝑉0

𝐺 , 𝑉1
𝐺 , 𝑉2

𝐺} and 𝜑|𝐻 = {𝑉0
𝐻, 𝑉1

𝐻, 𝑉2
𝐻}. Let 

𝑥 ∈ 𝑉0
𝐺 . Then 𝑥 ∈ 𝑉0. Since 𝜑 is an OcHRDF on 𝐺 + 𝐻, there exists 𝑦 ∈ 𝑉2 such that 

𝑑𝐺+𝐻(𝑥, 𝑦) = 2 and 〈𝑉0〉 is connected. Since 𝑑𝐺+𝐻(𝑥, 𝑤) = 1 for all 𝑤 ∈ 𝑉(𝐻), it follows that 

𝑦 ∈ 𝑉2
𝐺 and 〈𝑉0

𝐺〉 is connected. Hence, 𝜑|𝐺 is an OcHRDF on 𝐺. By similar argument, it is also 

concluded that 𝜑|𝐻 is an OcHRDF on 𝐻. Conversely, assume that 𝜑|𝐺 and 𝜑|𝐻 are OcHRDF 

on 𝐺 and 𝐻, respectively. For each 𝑗 ∈ {0, 1, 2}, let 𝑉𝑗 = 𝑉𝑗
𝐺⋃𝑉𝑗

𝐻. Then 𝜑 = (𝑉0, 𝑉1, 𝑉2) is a 

function on 𝐺. Let 𝑎 ∈ 𝑉0. Then 𝑎 ∈ 𝑉0
𝐺  or 𝑎 ∈ 𝑉0

𝐻.  Without loss of generality, consider 

𝑎 ∈ 𝑉0
𝐺 . Since 𝜑|𝐺 is an OcHRDF on 𝐺, there exists 𝑏 ∈ 𝑉2

𝐺  such that 𝑑𝐺(𝑎, 𝑏) = 2 and 〈𝑉0
𝐺〉 

is connected. Now, since 𝑉𝑗
𝐺 ⊆ 𝑉𝑗 for all 𝑗 ∈ {0, 1, 2}, it implies that 𝑏 ∈ 𝑉2 and 〈𝑉0〉 is 

connected. Therefore, it suffices to conclude that 𝜑 is an OcHRDF on 𝐺 + 𝐻. This completes 

the proof.                                                                                                                             

 

The following corollary and remark are direct consequence of Theorem 2.17. 
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Corollary 2.18. Let 𝐺 and 𝐻 be connected graphs with |𝑉(𝐺)| = 𝑛 and |𝑉(𝐻)| = 𝑚, 

respectively. Then 𝛾̃𝑐ℎ𝑅(𝐺 + 𝐻) = 𝛾̃𝑐ℎ𝑅(𝐺) + 𝛾̃𝑐ℎ𝑅(𝐻). 

 

Remark 2.19. Let 𝐺 and 𝐻 be complete graphs with |𝑉(𝐺)| = 𝑛 and |𝑉(𝐻)| = 𝑚, 

respectively. Then 𝛾̃𝑐ℎ𝑅(𝐺 + 𝐻) = 𝑛 + 𝑚. 

 

III. CONCLUSION 

 

This paper has introduced a new parameter variation of the hop Roman dominating function 

on a graph namely the outer-connected hop Roman dominating function.  It is depicted that if 

𝜑 = (𝑉0, 𝑉1, 𝑉2) is a 𝛾̃𝑐ℎ𝑅-function on graph 𝐺, then 𝑉1⋃𝑉2 is an outer-connected hop 

dominating set on 𝐺. It is concluded that if 𝛾̃𝑐ℎ𝑅(𝐺) < 𝑛, then |𝑉2| < |𝑉0| and the converse is 

also true. The outer-connected hop Roman domination number has been characterized with 

respect to small values, e.g. 1 or 2. In addition, the outer-connected hop Roman domination 

number of some special graphs has been determined and provided detailed proof. Moreover, 

the bounds of outer-connected hop Roman domination numbers on a graph have been 

investigated. For future research, it is interesting to explore the combinatorial properties of an 

outer-connected hop Roman dominating function under some product operations in graphs. 
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