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Abstract. This study investigates the derivation of a corrected trapezoidal rule for approximat-
ing the Riemann-Stieltjes integral. The corrected trapezoidal rule is derived by approximating
certain monomial functions to obtain optimal method coefficients. The proposed method has
an accuracy of order three. Furthermore, an error analysis is conducted to assess the accuracy
of the obtained approximation. In the final section, numerical computations are presented to
compare the performance of the proposed method with existing methods. The results demon-
strate that the proposed method produces smaller errors compared to previously developed
approaches.
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I. INTRODUCTION

The Riemann-Stieltjes integral was originally introduced by Thomas Stieltjes in 1894 in
his seminal work ”Recherches sur les fractions continues”, which was published in the Annales
de la Faculté des Sciences de Toulouse [1]. The Riemann-Stieltjes integral generalizes the stan-
dard Riemann integral by introducing a second integrator function, thereby achieving greater
flexibility in mathematical modeling and analysis. Specifically, for two real-valued functions
f(x) and g(x) defined on [a, b], the Riemann–Stieltjes integral is defined as∫ b

a

f(x) dg(x) = lim
∥∆∥→0

n−1∑
i=0

f(ξi) [g(xi+1)− g(xi)],

where ξi ∈ [xi, xi+1] and ∥∆∥ denotes the norm of the partition. When g(x) = x, it reduces to
the standard Riemann integral

∫ b

a
f(x) dx. Hence, the Riemann–Stieltjes integral can be inter-

preted as a weighted form of integration where the increment of g replaces the uniform measure
dx, allowing one to model situations where weights or transformations are non-uniform. This
flexibility makes it an essential tool in probability theory, stochastic processes, and functional
analysis, particularly in describing probability distributions and expected values. Owing to its
broad applicability, the Riemann-Stieltjes integral has also been widely applied in numerical
analysis and differential equation studies, and thus remains an active area of research and de-
velopment.

Various quadrature rules have been developed to approximate the Riemann-Stieltjes inte-
gral with the aim of achieving higher accuracy. Mercer [2] proposed a trapezoidal rule for the
Riemann-Stieltjes integral, leading to Hadamard’s inequality for general integrals. Later, Mer-
cer [3] extended this work by developing the Midpoint and Simpson’s 1/3 rules using the con-
cept of relative convexity. TThe trapezoidal rule has also been modified for Riemann-Stieltjes
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integrals by Zhao and Zhang [6, 7], by including the value of the derivative at the endpoint and
the derivative at the midpoint. Zhao and Zhang [8] also modified Simpsons 1/3 to approximate
this integral. Furthermore, Zhao, Zhang, and Ye [5] introduced a composite Trapezoidal rule
for the Riemann-Stieltjes integral. Additionally, Memon et al. [9] proposed efficient derivative-
based and derivative-free quadrature schemes, verified through numerical experiments. In an-
other study, Memon et al. [10, 11, 12] modified Simpson’s 1/3 rule by incorporating Heronian,
centroidal, and harmonic mean derivative values to approximate the Riemann-Stieltjes integral.
Memon [13] also modified the four-point quadrature to approximate the Riemann-Stieltjes in-
tegral. Several adjustments have been made in the numerical method over time to get better
performance based on our needs. For example, a recent variation of the Double Midpoint Rule
for approximating the Riemann-Stieltjes Integral [14].

Despite these advancements, most existing quadrature rules either require higher-order
derivatives or involve complex correction terms, which increase computational cost. There-
fore, there remains a need for a simple yet accurate method that can effectively approximate
the Riemann–Stieltjes integral. Building on the approach presented in [4], this study aims to
develop a modified corrected trapezoidal rule to improve the numerical approximation of the
Riemann-Stieltjes integral.

The motivation behind the study arises from the classical trapezoidal approximation,

IT =
f(a) + f(b)

2
[g(b)− g(a)]. (1)

This study aims to modify the corrected Trapezoidal rule to improve the numerical approxi-
mation of the Riemann-Stieltjes integral. The article provides a comprehensive analysis of the
corrected Trapezoidal rule in the context of the Riemann-Stieltjes integral, including the deriva-
tion of its error formulation. Furthermore, numerical simulations are conducted to evaluate the
accuracy and effectiveness of the proposed method.

II. RESULTS AND DISCUSSION

This section presents the findings of the study, including the development of the Corrected
Trapezoidal Rule for the Riemann-Stieltjes integral, its associated error analysis, and numerical
examples demonstrating its effectiveness. The proposed method is analyzed in detail to evaluate
its accuracy and applicability in numerical integration.

2.1. Corrected Trapezoidal Rule For The Riemann-Stieltjes Integral

In this section, the formulation of the corrected Trapezoidal Rule (CTRS) for the Rie-
mann–Stieltjes integral is presented. The formulation, stated in Theorem 2.1, is derived by
approximating monomial functions at selected powers and solving a nonlinear system that de-
termines the coefficients of the corrected trapezoidal rule in (1).

Theorem 1 Let f ′(s) and g(s) are continuous on [v, w] and g(t) is increasing function in the
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interval [v, w]. The corrected Trapezoidal Rule (CTR) for the Riemann-Stieltjes integral is

CTRS =

(
− g(v) +

6

(v − w)2

∫ w

v

∫ s

v

g(x)dxds+
12

(v − w)3

∫ w

v

∫ s

v

∫ y

v

g(x)dxdyds

)
f(v)

+

(
g(w)− 6

(v − w)2

∫ w

v

∫ s

v

g(x)dxds− 12

(v − w)3

∫ w

v

∫ s

v

∫ y

v

g(x)dxdyds

)
f(w)

−
(∫ w

v

g(s)ds+
4

(v − w)

∫ w

v

∫ s

v

g(x)dxds

+
6

(v − w)2

∫ w

v

∫ s

v

∫ y

v

g(x)dxdyds

)
f ′(w)

+

(
−2

(v − w)

∫ w

v

∫ s

v

g(x)dxds− 6

(v − w)2

∫ w

v

∫ s

v

∫ y

v

g(x)dxdyds

)
f ′(v). (2)

Proof. The general form of corrected trapezoid rule is [15, h. 174]

CT =
w − v

2
(f(v) + f(w))− (w − v)2

12
(f ′(w)− f ′(v)) , (3)

Obtaining the corrected trapezoidal rule for the Riemann-Stieltjes integral requires rewriting
Equation (3) as follows:

CT = a0f(v) + b0f(w)− [c0f
′(w)− d0f

′(v)] . (4)

The values of a0, b0, c0, and d0 will be determined such that the integral in Equation (4) is exact
for f(s) = 1, s, s2, s3 and obtain the following equations∫ w

v

1dg(s) = a0 + b0; (5)∫ w

v

sdg(s) = a0v + b0w − c0 + d0; (6)∫ w

v

s2dg(s) = a0v
2 + b0w

2 − 2wc0 + 2vd0; (7)∫ w

v

s3dg(s) = a0v
3 + b0w

3 − 3c0w
2 + 3d0v

2. (8)

The Riemann-Stieltjes integral formula is applied to the left side of equations (5), (6), (7), and
(8) to derive the following expression

a0 + b0 = g(w)− g(v); (9)

a0v + b0w − c0 + d0 = wg(w)− vg(v)−
∫ w

v

g(s)ds; (10)

a0v
2 + b0w

2 − 2wc0 + 2vd0 = w2g(w)− v2g(v)− 2

∫ w

v

g(s)dt

+2

∫ w

v

∫ t

v

g(x)dxds; (11)
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a0v
3 + b0w

3 − 3c0w
2 + 3d0v

2 = b3g(b)− a3g(a)− 3b2
∫ w

v

g(s)ds

+6b

∫ w

v

∫ s

v

g(x)dxds

−6

∫ w

v

∫ s

v

∫ y

v

g(x)dxdyds. (12)

The coefficients a0, a1, c0, and c are determined by solving the system of equations (9), (10),
(11), and (12), yielding the following results:

a0 = −g(v) +
6

(v − w)2

∫ w

v

∫ s

v

g(x)dxds+
12

(v − w)3

∫ w

v

∫ t

v

∫ y

v

g(x)dxdyds

b0 = g(w)− 6

(v − w)2

∫ w

v

∫ t

v

g(x)dxds− 12

(v − w)3

∫ w

v

∫ t

v

∫ y

v

g(x)dxdyds

c0 =

∫ w

v

g(s)ds+
4

(v − w)

∫ w

v

∫ t

v

g(x)dxds+
6

(v − w)2

∫ w

v

∫ t

v

∫ y

v

g(x)dxdyds

d0 =
−2

(v − w)

∫ w

v

∫ t

v

g(x)dxds− 6

(v − w)2

∫ w

v

∫ t

v

∫ y

v

g(x)dxdyds.

Based on Theorem (1), it can be seen that for f(s) = s4 the quadrature is not equal.
Therefore, the accuracy of this method is 3.

2.2. Error Term Of Corrected Trapezoidal Rule For The Riemann-Stieltjes Integral.

In this section, the error form of the corrected Trapezoidal Rule for the Riemann-Stieltjes
integral is given. We use the precision notion to calculate the error form associated to the

difference between the quadrature formula for the monomial
sr+1

(r + 1)!
and the exact value of

the

1

(r + 1)!

∫ w

v

sr+1dx =
wr+2 − vr+2

(r + 2)!
,

where r is the precision of the quadrature formula.

Theorem 2 Suppose that f ′(s) and g′(s) are continuous on [v, w] and g(s) is increasing there.
The corrected Trapezoidal Rule (CTRS) for the Riemann-Stieltjes integral with the error term
is

R(f) =

[(
v2w − 2vw2 + w2

12

)∫ w

v

∫ s

v

g(x)dxds

+

(
v − w

2

)∫ w

v

∫ s

v

∫ y

v

g(x)dxdyds

+

∫ w

v

∫ s

v

∫ z

v

∫ y

v

g(x)dxdydzds

]
f (4) (ξ) g

′
(η) (13)

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 8 NO. 2 (2025) 

Available online at www.jfma.math.fsm.undip.ac.id

https://doi.org/10.14710/jfma.v0i0.26475 171 p-ISSN: 2621-6019 e-ISSN: 2621-6035



Proof. The error in the equation (13) is obtained by using a monomial of order 4, which

f(s) =
s4

4!
. (14)

The exact solution of equation (14) is

1

4!

∫ w

v

t4dg =
1

24

(
w4g(w)− v4g(v)

)
− w3

6

∫ w

v

g(s)ds+
w2

6

∫ w

v

∫ s

v

g(x)dxds

−w

∫ w

v

∫ s

v

∫ y

v

g(x)dxdyds+

∫ w

v

∫ s

v

∫ z

v

∫ y

v

g(x)dxdydzds. (15)

Based on Theorem (1), the approximate solution is

CNTR =
1

24

(
w4g(w)− v4g(v)

)
− w3

6

∫ w

v

g(s)ds

−−v2 + 2vw + 5b2

12

∫ w

v

∫ s

v

g(x)dxds

−−v − w

2

∫ w

v

∫ s

v

∫ y

v

g(x)dxdyds. (16)

The error term is obtained by subtracting the exact solution (15) from the approximate solution
(16), hence

R(f) =

[(
v2w − 2vw2 + w2

12

)∫ w

v

∫ s

v

g(x)dxds

+

(
v − w

2

)∫ w

v

∫ s

v

∫ y

v

g(x)dxdyds

+

∫ w

v

∫ s

v

∫ z

v

∫ y

v

g(x)dxdydzds

]
f (4) (ξ) g

′
(η) .

2.3. Numerical Examples

To validate the theoretical findings, numerical examples are given to illustrate the per-
formance of the Corrected Trapezoidal Rule for Riemann-Stieltjes integrals (CTRS). These
examples compare the proposed method with existing numerical integration techniques, namely
Trapezoidal Rule for Riemann-Stieltjes integral (AT ) [6], Simpson Centroidal Riemann-Stieltjes
integral (SC) [11], Simpson Heronian Riemann-Stieltjes integral (SH) [10], and Simpson Har-
monic Riemann-Stieltjes integral (SHM) [12], highlighting its efficiency and precision.

Example 1 Integral
∫ 1.0

0.0
s3d (sin s2),

∫ 1.0

0.0
e−sd (cos s),

∫ 1

0
ln(s + 1)d (cos s) are approximated

by using CTRS, AT , SC, SH , and SHM .
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Table 1. Comparison of computational results of CTRS, AT , SC, SH , and SHM methods

Methods
Integral∫ 1.0

0.0
s3d (sin s2)

∫ 1.0

0.0
e−sd (cos s)

∫ 1

0
ln(s+ 1)d (cos s)

Error Error Error
CTRS 0.0000000000000 0.0003985494540 0.0008831519270
AT 0.0000000000000 0.0005691286670 0.0011528711856
SC 0.0119205077121 0.0010307315662 0.0011632818783
SH 0.0119205077121 0.0011843421351 0.0020109453758

SHM 0.0119205077121 0.0013987229536 0.0051128623031

The computational results in Table (1.) compare five numerical integration methods: CTRS,
AT, SC, SH , and SHM , with the CTRS method consistently demonstrating superior accu-
racy. In the first integral

∫ 1

0
s3d(sin s2), all methods achieve zero error, indicating excellent

performance for relatively simple integrals. However, the CTRS method stands out in more
complex cases.

For the second integral
∫ 1

0
e−sd(cos s), CTRS achieves the lowest error of 0.0003985494540,

outperforming other methods such as AT and SC. This demonstrates its efficiency in handling
exponential and trigonometric components with better numerical stability. Similarly, for the
third integral

∫ 1

0
ln(s+1)d(cos s), CTRS again records the smallest error of 0.0008831519270,

indicating its robustness with logarithmic-trigonometric integrals.

Overall, the CTRS method consistently delivers minimal error across all tested integrals,
especially in complex scenarios. Its superior precision makes it a reliable choice for mathemat-
ical and engineering applications requiring high numerical accuracy.

III. CONCLUSIONS AND FUTURE RESEARCH DIRECTION

In conclusion, the Corrected Trapezoidal Rule for the Riemann-Stieltjes integral is derived
from the formulation of the Corrected Trapezoidal Rule itself. This method achieves third-
order accuracy. The error expression for the Corrected Trapezoidal Rule in Riemann-Stieltjes
integration is obtained by calculating the difference between the exact value and the quadra-
ture formula applied to monomials of a certain degree.the Corrected Trapezoidal Rule for the
Riemann-Stieltjes integral (CTRS) has proven to be a highly accurate and reliable numeri-
cal method. Its minimal error across various types of integrals, including polynomial, expo-
nential, trigonometric, and logarithmic functions, highlights its versatility and robustness. The
computational results clearly demonstrate that CTRS outperforms other conventional methods
such as AT, SC, SH , and SHM , particularly in complex integration scenarios. Future research
could focus on modifying other numerical methods to approximate the Riemann-Stieltjes in-
tegral. Exploring variations of classical methods might reveal new techniques that enhance
accuracy or computational efficiency.
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