skip to main content

On the necessary and sufficient condition of a k-Euler pair

*Yosua Feri Wijaya orcid  -  Department of Mathematics, Universitas Gadjah Mada., Indonesia
Uha Isnaini orcid scopus  -  Department of Mathematics, Universitas Gadjah Mada., Indonesia
Yeni Susanti orcid scopus  -  Department of Mathematics, Universitas Gadjah Mada., Indonesia

Citation Format:
Abstract
In this paper, we discuss George Andrews’ definition of an Euler pair andSubbarao’s generalization of the Euler pair to a k-Euler pair. Let N and M be non-empty sets of natural numbers. A pair (N, M) is called a k-Euler pair if, for any natural number n, the number of partitions of n into parts from N is equal to the number of partitions of n into parts  from M, with  the  condition  that  each  part  appears  fewer than k times. We further explore several theorems concerning Euler pairs that were established by Andrews and Subbarao, and we present proofs using a method distinct from those previously utilized.
Fulltext View|Download
Keywords: Partitions ; Number Theory ; Euler pair.
Funding: Indonesia Endowment Fund for Education (LPDP) under contract 202310210242421

Article Metrics:

  1. George E Andrews, Euler’s partition identity and two problems of george beck, Math.Student 86 (2017), no. 1-2, 115–119
  2. George E Andrews and Kimmo Eriksson,Integer partitions, Cambridge University Press,2004
  3. Cristina Ballantine and Richard Bielak,Combinatorial proofs of two euler-type identitiesdue to andrews, Annals of Combinatorics23(2019), no. 3-4, 511–525
  4. Cristina Ballantine and Amanda Welch,Beck-type identities for euler pairs of orderr, Transient Transcendence in Transylvania International Conference, Springer, 2019,pp. 141–161
  5. , Beck-type companion identities for franklin’s identity via a modular refinement,Discrete Mathematics 344 (2021), no. 8, 112480
  6. , Beck-type companion identities for franklin’s identity, Contributions to DiscreteMathematics 18 (2023), no. 1, 53–65
  7. Bruce C Berndt,Number theory in the spirit of ramanujan, vol. 34, American Mathemat-ical Soc., 2006
  8. Gabriel Gray, David Hovey, Brandt Kronholm, Emily Payne, Holly Swisher, and Ren Wat-son,A generalization of franklin’s partition identity and a beck-type companion identity:G. gray et al., The Ramanujan Journal67(2025), no. 4, 100
  9. Mircea Merca,A reversal of schur’s partition theorem, Revista de la Real Academia deCiencias Exactas, F ́ısicas y Naturales. Serie A. Matem ́aticas116(2022), no. 4, 181
  10. MV Subbarao,Partition theorems for euler pairs, Proceedings of the American Mathe-matical Society 28 (1971), no. 2, 330–336 .JOURNAL OF FUNDAMENTAL MATHEMATICS AND APPLICATIONS (JFMA) VOL. 8 NO. 1 (2025) Available online at www.jfma.math.fsm.undip.ac.id https://doi.org/10.14710/jfma.v8i1.24953127 p-ISSN: 2621-6019 e-ISSN: 2621-6035

Last update:

No citation recorded.

Last update:

No citation recorded.