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Abstract. In this paper, we discuss George Andrews’ definition of an Euler pair and
Subbarao’s generalization of the Euler pair to a k-Euler pair. Let N and M be non-
empty sets of natural numbers. A pair (N,M) is called a k-Euler pair if, for any natural
number n, the number of partitions of n into parts from N is equal to the number of
partitions of n into parts from M , with the condition that each part appears fewer
than k times. We further explore several theorems concerning Euler pairs that were
established by Andrews and Subbarao, and we present proofs using a method distinct
from those previously utilized.
Keywords: Partitions, Number Theory, Euler pair.

1 INTRODUCTION

In the theory of partitions, a well-known identity, known as Euler’s partition theorem,
states that the number of partitions of an integer n into odd parts is equal to the number of
partitions of n into distinct parts. Inspired by this identity, Andrews [2] introduced the concept
of an Euler pair, defined as follows:

Definition 1.1. Let N and M be any subsets of all natural number set N. A pair (N,M) is
called an Euler pair if for any n ∈ N it satisfies

p (n | parts in N ) = p (n | distinct parts in M ) .

For example, by Euler’s partition theorem, we know that for any n ∈ N, the following
equality holds:

p (n | parts in {1, 3, 5, 7, 9, . . . }) = p (n | distinct parts in N) ,

which implies that the pair ({1, 3, 5, 7, 9, . . . },N) is an Euler pair.

Several related studies have been conducted on Euler’s pair. For instance , Subbarao [10]
presents two additional examples of non-trivial Euler pairs:

({n ∈ N | n ≡ 1, 5 (mod 6)} , {n ∈ N | n ̸≡ 0 (mod 3)})
and

({n ∈ N | n ≡ 2, 5, 11 (mod 12)} , {n ∈ N | n ≡ 2, 4, 5 (mod 6)}) .

Additionally, Subbarao’s paper [10] was the first to introduce the concept of Euler pair of
order r, which is equivalent to the definition of k-Euler pair that will be defined later in this
paper.
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For another example, Merca [9] provides a combinatorial interpretation on the Euler pair
(N,M), where N = {n ∈ N | n ≡ ±1 (mod 6)} and M = {n ∈ N | n ̸≡ 0 (mod 3)}.

There are also a lot of studies that doesn’t directly dwell on the Euler pair itself but more
on some topics that are developed from and/or inspired by Euler pair. For example, on Euler’s
partition identities (see [1] and [3]) and on Beck-type identities (see [4], [5], [6], and [8]).

Furthermore, Andrews [2] discovered the following theorem:

Theorem 1.1. [2] If N is any set of integers such that no element of N is a power of two times
an element of N , and M is the set containing all elements of N together with all their multiples
of powers of two, then (N,M) is an Euler pair.

Theorem 1.1 was proven by Andrews [2] through a technique known as merging. This
technique involves, for any partition of n, the repeated combination of two identical summands
until all summands are distinct. Andrews then demonstrated the existence of a bijection between
the set of all partitions of n with parts in N and the set of all partitions of n with distinct parts
in M .

We can now strengthen Theorem 1.1 into the following result.

Theorem 1.2. The pair of two sets (N,M) is an Euler pair, if and only if N is a set of integers
such that no element of N is a power of two times another element of N and M is the set
containing all elements of N together with all their multiples of powers of two.

Alternatively, the pair of sets (N,M) is called an Euler pair if and only if

2M ⊂ M and N = M \ 2M.

Theorem 1.2 is derived from two exercises presented in Andrews’ book [2], although no
proof is provided there. Consequently, one of the objectives of this paper is to present a detailed
proof of the theorem.

In another book, Berndt [7] discusses a generalization of Euler’s partition theorem as
follows:

Theorem 1.3. Let k be an integer where k ≥ 2, then for any positive integer n we have that

p (n | parts not divisible by k ) = p (n | no parts appears ≥ k times) .

The identity mentioned above is presented as an exercise in Berndt’s book [7]. Therefore,
the proof of this theorem will also be included in this paper.

Motivated by the construction of Euler pairs from Euler’s partition theorem, we propose a
generalization of Euler pairs based on Theorem 1.3, which extends Euler’s partition theorem.
Indeed, Subbarao [10] provides the following definition.

Definition 1.2. Let N and M be any subsets of N, a pair (N,M) is called an Euler pair of
order k if for any n ∈ N it satisfies

p (n | parts in N ) = p (n | parts in M, appears < k times) .
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From this definition, we observe that when k = 2, the result is the standard Euler pair. For
simplicity, we will refer to an Euler pair of order k as a k-Euler pair.

In his paper, Subbarao [10] presents the necessary and sufficient conditions for a k-Euler
pair, which generalize Theorem 1.2, as follows.

Theorem 1.4. [10] A pair of sets (N,M) is a k-Euler pair if and only if

kM ⊂ M and N = M − kM.

Alternatively, (N,M) forms a k-Euler pair if and only if N is a set of integers such that no
element of N is a multiple of k times another element of N , and

M =
{
kx · n | n ∈ N and x ∈ Z≥0

}
,

where Z≥0 denotes the set of all non-negative integers.

In this paper, we aim to prove the above theorem using a method different from that em-
ployed by Subbarao.

In the next section, we will prove several lemmas that are essential for establishing the
main results, provide the proofs of Theorems 1.2 and 1.3, and provide alternative proof of 1.4.

2 Results and Discussions

2.1. Some premilinary lemmas

To prove Theorem 1.2, we first present some preliminary lemmas.

Lemma 2.1. For any given set N , there can be at most one set M such that (N,M) is an Euler
pair.

Proof. For any given set N , suppose that there exist two different sets Ma and Mb such that
(N,Ma) and (N,Mb) are both Euler pairs. Then, necesarilly

p (n | parts in N ) = p (n | distinct parts in Ma ) = p (n | distinct parts in Mb ) .

More specifically,

p (n | distinct parts in Ma ) = p (n | distinct parts in Mb ) . (1)

Let x be the smallest number that belongs to one set but not the other. In other words, x
is the smallest number that satisfies either x ∈ Ma ∩ M c

b or x ∈ M c
a ∩ Mb. Without loss of

generality, suppose that x ∈ Ma ∩M c
b .

Now, we define the set

M0 = {m | m ∈ Ma ∩Mb and m < x} .

It is straightforward to verify that M0 ⊆ Ma and M0 ⊆ Mb. Moreover, we have M0 ∪ {x} ⊆
Ma, but M0 ∪ {x} ̸⊆ Mb.
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We observe that

p (x | distinct parts in Ma )

= p (x | parts in Ma, distinct and at most x)

= p (x | distinct parts in M0 ∪ {x})
= p (x | distinct parts in M0 ) + 1︸︷︷︸

partitioning x as itself

.

On the other hand

p (x | distinct parts in Mb )

= p (x | parts in Mb, distinct and at most x)

= p (x | distinct parts in M0 ) .

Thus we have

p (n | distinct parts in Ma ) = p (n | distinct parts in Mb ) + 1 (2)

Since Equations (1) and (2) contradict each other, it follows that our initial assumption was
incorrect. Therefore, for any given set N , there can be at most one set M such that (N,M)
forms an Euler pair.

Next, we have the following lemma.

Lemma 2.2. For any given set N which contains an element of the form 2k ·a such that a ∈ N
and k > 0, there exists no set M such that (N,M) is an Euler pair.

Proof. For any given set N that contains elements in which one is a power of two times another,
let 2k ·a be the smallest element in N that is a power of two times some other element in N (in
this case, a). Suppose that there exists a set M such that the pair (N,M) forms an Euler pair.

Now, we construct a set

N0 =
{
n |n ∈ N and n < 2k · a

}
.

Since 2k · a is the smallest element in N that is a power of two multiplied by some other
element inN , no element ofN0 is a power of two times an element ofN0. By applying Theorem
1.1, we can construct an Euler pair (N0,M0) where

M0 =
{
2x · n | n ∈ N0 and x ∈ Z≥0

}
.

From Lemma 2.1, we know that there is at most one way to construct a set M for any
given set N such that (N,M) forms an Euler pair. Since N0 ⊆ N , it must follow that M0 ⊆
M . Additionally, from the definition of M0, it is clear that 2k · a ∈ M0, which implies that
2k · a ∈ M .
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Now, let m be any natural number such that m < 2k · a and m /∈ M0. Suppose that
m ∈ M . Since M0 ⊆ M and m /∈ M0 but m ∈ M , it follows that the following condition
must hold:

p (m | distinct parts in M) ≥ p (m | distinct parts in M0) + 1.

However, we know that

p (m | distinct parts in M )

= p (m | parts in N )

= p (m | parts in N at most m)

= p
(
m | parts in N less than 2k · a

)
= p (m | parts in N0 )

= p (m | distinct parts in M0 ) .

We arrive at a contradiction, which means that our assumption was incorrect. Therefore,
for any natural number m < 2k ·a, if m /∈ M0, then m /∈ M . More specifically, for any natural
number m < 2k · a, we have m ∈ M if and only if m ∈ M0.

Because 2k · a ∈ M0 and 2k · a ∈ M , and for any natural number m < 2k · a, m ∈ M if
and only if m ∈ M0, we can construct the set

M1 =
{
m | m ∈ M and m ≤ 2k · a

}
=

{
m | m ∈ M0 and m ≤ 2k · a

}
.

Since (N,M) and (N0,M0) are Euler pairs, then we have

p
(
2k · a | parts in N

)
= p

(
2k · a | distinct parts in M

)
= p

(
2k · a | parts in M distinct and at most 2k · a

)
= p

(
2k · a | distinct parts in M1

)
= p

(
2k · a | parts in M0 distinct and at most 2k · a

)
= p

(
2k · a | distinct parts in M0

)
= p

(
2k · a | parts in N0

)
.

However, we can see that

p
(
2k · a | parts in N

)
= p

(
2k · a | parts in N that is at most 2k · a

)
= p

(
2k · a

∣∣ parts in N0 ∪
{
2k · a

})
= p

(
2k · a | parts in N0

)
+ 1︸︷︷︸

partitioning 2k·a as 2k·a itself

.
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We reach a contradiction, which means that our initial assumption was incorrect. Thus, for
any given set N , where one element is a power of two times another element, no set M can
exist such that (N,M) forms an Euler pair.

2.2. Proof of Theorem 1.2

Using the results of the previous subsection, we present the proof of Theorem 1.2.

(⇐) Let (N,M) be a pair where N is a set of integers such that no element in N is a
power of two times another element in N . The set M consists of all elements of N along with
their multiples by powers of two. By Theorem 1.1, it is evident that (N,M) forms an Euler
pair.

(⇒) Since (N,M) is an Euler pair, by applying Lemma 2.2, we conclude that N must be
a set of integers such that no element of N is a power of two times another element in N .

Next, we construct a set M ′ such that M ′ contains all elements of N along with all of their
multiples by powers of two. According to Theorem 1.1, the pair (N,M ′) is an Euler pair.

On the other hand, from Lemma 2.1, we know that there can be at most one set M such
that (N,M) is an Euler pair. Therefore, since both (N,M) and (N,M ′) are Euler pairs, it
follows that M = M ′. Hence, M is the set containing all elements of N along with all their
multiples of powers of two.

Thus, we define (N,M) as an Euler pair if and only if N is a set such that for any n ∈ N
and for any k ∈ N, we have 2k · n /∈ N . The set M is defined as

M =
{
2x · n

∣∣n ∈ N and x ∈ Z≥0
}
.

Therefore,
2M = {2x · n |n ∈ N and x ∈ N} .

For any element 2x ·n ∈ 2M , we have n ∈ N and x ∈ N. Since N ⊂ Z≥0, it follows that
x ∈ Z≥0. Therefore, 2x · n ∈ M , or equivalently, 2M ⊆ M .

For any element n ∈ N , since n = 20 · n, it follows that n ∈ M but n /∈ 2M . Hence,
n ∈ M − 2M , which implies that N ⊆ M − 2M .

Next, we pick any element 2x ·n ∈ M \2M . In other words, 2x ·n ∈ M but 2x ·n /∈ 2M .
Since 2x · n ∈ M , it follows that n ∈ N and x ∈ Z≥0. Additionally, because 2x · n /∈ 2M ,
we have either n /∈ N or x /∈ N. From this, we can conclude that n ∈ N and x ∈ Z≥0 \ N.
Therefore, x = 0, which implies that 2x · n = n ∈ N , or simply M \ 2M ⊂ N .

We can conclude that N = 2M −M , thus the proof of Theorem 1.2 is complete.

2.3. Proof of Theorem 1.3

Now we present the proof of Theorem 1.3.

Let A (n) = p (n | parts not divisible by k ), the generating function of A (n) is,
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∞∑
n=0

A (n) · qn =
j≥1∏

j ̸≡0 (mod k)

1

(1− qj)
.

Let B (n) = p (n | no parts appears ≥ k times), the generating function of B (n) is,

∞∑
n=0

B (n) · qn =
∞∏
j=1

(
1 + qj + q2j + · · ·+ q(k−1)j

)
.

Since

∞∑
n=0

A (n) · qn =
j≥1∏

j ̸≡0 (mod k)

1

(1− qj)

=
∞∏
j=1

(1− qkj)

(1− qj)

=
∞∏
j=1

(
1 + qj + q2j + · · ·+ q(k−1)j

)
=

∞∑
n=0

B (n) · qn,

then A (n) = B (n), which proves Theorem 1.3.

2.4. Some properties for k-Euler pair

Since a k-Euler pair is constructed as a generalization of the Euler pair, one may naturally
ask whether Theorem 1.1 and Theorem 1.2 can also be generalized. As it turns out, Theorem
1.1 can indeed be generalized, as shown in the following theorem.

Theorem 2.1. If N is any set of integers such that no element of N is a power of k times an
element of N , and M is the set containing all elements of N together with all their multiples
of powers of k, then (N,M) is a k-Euler pair.

Proof. Suppose N = {n1, n2, n3, · · ·}, where ni ̸= (k)h · nj for any natural number h, i, and
j, while M = {kh · nj |nj ∈ N and h ∈ Z≥0}.

For any partition with parts in N , we do the following procedure:

1. If in that partition, any number appears k times, then add the k of them together into one.

2. After step 1, see if there are still any numbers that appears k times. If there are, we repeat
the process.

3. Do this until there are no longer any number that appears at least k times.
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Since this procedure will not terminate until the resulting partition has no number that
appears at least k times, the final result must contain no parts that appear more than k times.
Additionally, since we start with a partition that only uses elements of N as its parts, the result-
ing partition will consist solely of parts that are elements of M .

Since N = {n1, n2, n3, · · ·}, where ni ̸= kh · nj for any natural numbers h, i, and j, any
two distinct partitions with parts in N will result in two different outcomes after applying the
aforementioned procedure.

Thus, this merging procedure defines an injection from the set of all partitions of n with
parts in N into the set of all partitions of n with parts in M , where no part appears at least k
times. Additionally, we can reverse the procedure: for any partition with parts in M where no
part appears more than k times, the following steps can be applied:

1. If in that partition, there are numbers that is not an element of N , for example in the form
of kh · nj where nj ∈ N , then divide them into kh equal parts.

2. Do this until all the numbers that appears is an element of N .

It is evident that the final result of this procedure is a partition with parts in N.

Using the fact that any natural number can be uniquely represented as the sum of powers
of k, where no number appears at least k times, it follows that any two different partitions with
parts in M , where no part appears at least k times, will yield two distinct results after applying
the procedure described above.

Thus, there exists an injection from the set of all partitions of n with parts in M , where no
part appears at least k times, into the set of all partitions of n with parts in N .

We can conclude that a bijection exists, which means that the number of partitions of n
with parts in M and no part appearing at least k times is the same as the number of partitions
of n with parts in N .

Thus, p (n | parts in N) = p (n | parts in M, appears less than k times). In other words,
(N,M) is a k-Euler pair.

Further investigation reveals that Lemmas 2.1 and 2.2 can also be generalized for k-Euler
pairs. We begin by presenting a generalization of Lemma 2.1 as follows.

Lemma 2.3. For any given set N , there can be at most one set M such that (N,M) is a
k-Euler pair.

Proof. For any given set N , suppose there exist two distinct sets Ma and Mb such that both
pairs (N,Ma) and (N,Mb) are Euler pairs. Necessarily,

p (x | parts in Ma, appears less than k times)
= p (x | parts in Mb, appears less than k times) . (3)
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Let x be the smallest number that belongs to one set but not the other. Specifically, x is the
smallest number such that x ∈ Ma ∩M c

b or x ∈ M c
a ∩Mb. Without loss of generality, assume

that x ∈ Ma ∩M c
b .

Now, we construct a set

M0 = {m |m ∈ Ma ∩Mb and m < x} .

Then M0 ⊆ Ma and M0 ⊆ Mb, while M0 ∪ {x} ⊆ Ma but M0 ∪ {x} ̸⊆ Mb.

We observe that

p (x | parts in Ma, appears less than k times)
= p (x | parts in Ma that is at most x, appears less than k times)
= p (x | parts in M0 ∪ {x} , appears less than k times)
= p (x | parts in M0, appears less than k times) + 1︸︷︷︸

partitioning x as itself

.

On the other hand

p (x | parts in Mb, appears less than k times)
= p (x | parts in Mb that is at most x, appears less than k times)
= p (x | parts in M0, appears less than k times) .

Thus we have

p (x | parts in Ma, appears less than k times)
= p (x | parts in Mb, appears less than k times) + 1. (4)

Since Equations (3) and (4) contradict each other, this implies that our initial assumption
was incorrect. Therefore, for any given set N , there can be only one set M such that (N,M)
forms a k-Euler pair.

Next, we have a generalization of Lemma 2.2 as follows.

Lemma 2.4. For any given set N , if there exists a natural number p such that kp · a ∈ N for
some a ∈ N , then there is no set M such that (N,M) is a k-Euler pair.

Proof. Suppose that kp · a is the smallest element in N that is a power of k multiplied by some
other element in N (in this case, a). Furthermore, suppose that there exists a set M such that
(N,M) forms a k-Euler pair.

Now, we construct a set

N0 = {n |n ∈ N and n < kp · a} .
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Since kp · a is the smallest element in N that is a power of k multiplied by some element
of N , then there is no element of N0 that can be written as a power of k times an element of
N0. By applying Theorem 2.1, we can construct a k-Euler pair (N0,M0), where

M0 =
{
kx · n |n ∈ N0 and x ∈ Z≥0

}
.

From Lemma 2.3, we know that there is at most one way to construct a set M for any given
set N such that (N,M) forms a k-Euler pair. Since N0 ⊆ N , it must follow that M0 ⊆ M .
Furthermore, from the definition of M0, it is clear that kp · a ∈ M0, which implies kp · a ∈ M .

Now, let m be any natural number such that m < kp · a and m /∈ M0. Suppose that
m ∈ M . Since M0 ⊆ M and m /∈ M0, but m ∈ M , the following condition must be satisfied:

p (m | parts in M, appears less than k times)
≥ p (m | parts in M0, appears least than k times) + 1. (5)

However, we know that

p (m | parts in M, appears less than k times)
= p (m | parts in N )

= p (m | parts in N that is at most m)

= p (m | parts in N that is at most kp · a)
= p (m | parts in N0 )

= p (m | parts in M0, appears less than k times) . (6)

From Equation (5) and (6), we have a contradiction, which means that our assumption
was incorrect. Therefore, for any natural number m < kp · a, if m /∈ M0, then m /∈ M . More
specifically, for any natural number m < kp · a, we have m ∈ M if and only if m ∈ M0.

As kp · a ∈ M0 and kp · a ∈ M , and for any natural number m < kp · a, m ∈ M if and
only if m ∈ M0, we construct a set

M1 = {m |m ∈ M and m ≤ kp · a} = {m |m ∈ M0 and m ≤ kp · a} .

Since (N,M) and (N0,M0) are k-Euler pairs, then we have

p (kp · a | parts in N )

= p (kp · a | parts in M, appears less than k times)
= p (kp · a | parts in M that is at most kp · a, appears less than k times)
= p (kp · a | parts in M1, appears less than k times)
= p (kp · a | parts in M0 that is at most kp · a, appears less than k times)
= p (kp · a | parts in M0, appears less than k times)
= p (kp · a | parts in N0 ) . (7)
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However,

p (kp · a | parts in N )

= p (kp · a | parts in N that is at most kp · a)
= p (kp · a | parts in N0 ∪ {kp · a})
= p (kp · a | parts in N0 ) + 1︸︷︷︸

partitioning kp·a as itself

. (8)

From Equation (7) and (8), we have a contradiction, which means that our initial assump-
tion was incorrect. Thus, for any given set N , where some element is a power of k times another
element, there cannot exist a set M such that (N,M) forms a k-Euler pair.

2.5. Alternative proof of Theorem 1.4

Using Lemma 2.3 and 2.4, we can now prove Theorem 1.4.

(⇐) Let (N,M) be a pair where N is a set of integers such that no element of N is a
multiple of any other element of N by a power of k, and M is the set consisting of all elements
of N along with all their multiples by powers of k. By applying Theorem 2.1, it follows that
(N,M) forms a k-Euler pair.

(⇒) Since (N,M) is a k-Euler pair, by using Lemma 2.4, we can conclude that N must
be a set of integers such that no element of N is a power of k times another element of N .

Next, we construct a set M ′, where

M =
{
kx · n |n ∈ N and x ∈ Z≥0

}
.

According to Theorem 2.1, (N,M ′) is a k-Euler pair.

On the other hand, from Lemma 2.3 we know that there can be at most one set M such
that (N,M) is a k-Euler pair. Therefore, since (N,M) and (N,M ′) are both k-Euler pair,
then M = M ′. Thus, we have that (N,M) is a k-Euler pair if and only if kx · n /∈ N for any
n ∈ N and x ∈ N and M = {kx · n |n ∈ N and x ∈ Z≥0}.

Therefore, if (N,M) is a k-Euler pair, then kM = {kx · n |n ∈ N and x ∈ N}. For any
element kx · n ∈ kM , it satisfies n ∈ N and x ∈ N ⊂ Z≥0. Thus, kx · n ∈ M or in other
word kM ⊂ M .

For any element n ∈ N , since n = k0 ·n then n ∈ M but n /∈ kM . Thus, n ∈ M−kM ,
that is to say N ⊂ M − kM . Next, we pick any element kx · n ∈ M − kM , or in other
word, kx · n ∈ M but kx · n /∈ M . Since kx · n ∈ M , then n ∈ N and x ∈ Z≥0. And since
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kx ·n /∈ kM , then n /∈ N or x /∈ N. Therefore, we can conclude that n ∈ N and x ∈ Z≥0 \N,
thus x = 0. It means that kx · n = n ∈ N , and hence M − kM ⊂ N . We conclude that
N = M − kM , which completes the proof of Theorem 1.4.

2.6. Differences with Subbarao’s proof of Theorem 1.4

Before we compare our new proofs to the existing proof, we will summarize how Subbarao
proved Theorem 1.4.

First, Subbarao defined p (N ;n) as the number of partitions of n into parts taken from
N , while qk (M ;n) as the numbers of partitions of n into parts taken from M with no part
repeated more than (k − 1) times.

Next, Subbarao calculate the generating function of p (N ;n) and qk (M ;n), which is
given by

∞∑
n=0

qk (M ;n) · xn =
∏
a∈M

1− xra

1− xa
,

∞∑
n=0

p (N ;n) · xn =
∏
b∈N

1

1− xb
.

Thus by Definition 1.2, a pair (N,M) is called an Euler pair of order k if it satisfies∏
a∈M

1− xra

1− xa
=

∏
b∈N

1

1− xb

Then, Subbarao proved that
∏
a∈M

1−xra

1−xa =
∏
b∈N

1
1−xb holds if and only if kM ⊂ M and

N = M − kM .

From this we can see that Subbarao’s proof mainly used algebraic manipulation with the
help of generating functions of the partitions.

On the other hand our proof analyze the relation of the two partitions directly using the
help of set theory.

3 CONCLUSIONS AND FUTURE RESEARCH DIRECTION

In this paper, we have established alternative proof for necessary and sufficient conditions
for a k-Euler pair, generalizing the concept of Euler pairs introduced by Andrews and expanded
upon by Subbarao. Future research could further investigate generalized Euler pairs with ad-
ditional constraints or explore applications of k-Euler pairs in related combinatorial problems.
Additionally, exploring the implications of these results in modular forms or partition identities
could be a promising avenue for advancing this field.
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