skip to main content

SOMBOR INDEX AND ITS GENERALIZATION OF POWER GRAPH OF SOME GROUP WITH PRIME POWER ORDER

Rendi Bahtiar Pratama  -  Universitas Mataram, Indonesia
Fariz Maulana scopus  -  Universitas Mataram, Indonesia
Na'imah Hijriati scopus  -  Universitas Lambung Mangkurat, Indonesia
*I Gede Adhitya Wisnu Wardhana orcid scopus publons  -  Universitas Mataram, Indonesia

Citation Format:
Abstract
Graphs are an intriguing topic of discussion due to their numerous applications, particularly in chemistry. Topological indices derived from graph representations of molecules enable us to predict various properties of these compounds, including their physical characteristics, chemical reactivity, biological activity, toxicity, and atom-to-atom interactions. More recently, graphs have also been utilized to depict abstract mathematical objects such as groups. A notable example of graph representation in group theory is seen in power graphs. This research explores new graph topological indices based on vertex degrees, inspired by the Euclidean metric, particularly the Sombor index, and its application to the power graph of the integer modulo group and the dihedral group. The primary outcome of this study is the derivation of a general formula for the Sombor index and its generalization.
Fulltext View|Download
Keywords: Power Graph; Sombor Index; Dihedral Group; Integer Modulo

Article Metrics:

  1. A. G. Syarifudin, L. M. Santi, A. R. Faradiyah, V. R. Wijaya, and E. Suwastika, “Topological Indices of the Relative Coprime Graph of the Dihedral Group,” JTAM (Jurnal Teori dan Aplikasi Matematika), vol. 7, no. 3, p. 698, Jul. 2023, doi: 10.31764/jtam.v7i3.14913
  2. S. A. Aulia, I. G. A. W. Wardhana, W. U. Misuki, and N. D. H. Nghiem, “The Structures of Non-Coprime Graphs for Finite Groups from Dihedral Groups with Regular Composite Orders,” InPrime: Indonesian Journal of Pure and Applied Mathematics, vol. 5, no. 2, pp. 115–122, 2023, doi: 10.15408/inprime.v5i2.29018
  3. J. Abawajy, A. Kelarev, and M. Chowdhury, “Power Graphs: A Survey,” 2013. [Online]. Available: www.ejgta.org
  4. S. H. P. Ningrum, A. M. Siboro, S. T. Lestari, I. G. A. W. Wardhana, and Z. Y. Awanis, “ABSTRAKSI CHEMICAL TOPOLOGICAL GRAPH (CTG) MELALUI INDEKS TOPOLOGIS GRAF ALJABAR,” in Prosiding Saintek 6, 2024, pp. 92–100
  5. S. Wagner and H. Wang, Introduction to Chemical Graph Theory. A Chapman & Hall Group, 2019. [Online]. Available: https://www.crcpress.com/Discrete-Mathematics-and-Its-Applications/book-series/
  6. V. Aşkin and Ş. Büyükköse, “The Wiener Index of an Undirected Power Graph,” Advances in Linear Algebra & Matrix Theory, vol. 11, no. 01, pp. 21–29, 2021, doi: 10.4236/alamt.2021.111003
  7. T. Mansour, M. A. Rostami, E. Suresh, and G. B. A. Xavier, “On the Bounds of the First Reformulated Zagreb Index,” Turkish Journal of Analysis and Number Theory, vol. 4, no. 1, pp. 8–15, Jan. 2016, doi: 10.12691/tjant-4-1-2
  8. M. N. Husni, H. Syafitri, A. M. Siboro, A. G. Syarifudin, Q. Aini, and I. G. A. W. Wardhana, “THE HARMONIC INDEX AND THE GUTMAN INDEX OF COPRIME GRAPH OF INTEGER GROUP MODULO WITH ORDER OF PRIME POWER,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 3, pp. 961–966, Sep. 2022, doi: 10.30598/barekengvol16iss3pp961-966
  9. N. I. Alimon, N. H. Sarmin, and A. Erfanian, “The Szeged and Wiener indices for coprime graph of dihedral groups,” in AIP Conference Proceedings, American Institute of Physics Inc., Oct. 2020. doi: 10.1063/5.0018270
  10. M. N. Husni, I. G. A. W. Wardhana, P. K. Dewi, and I. N. Suparta, “Szeged Index and Padmakar-Ivan Index of Nilpotent Graph of Integer Modulo Ring with Prime Power Order Indeks Szeged dan Indeks Padmakar-Ivan pada Graf Nilpoten pada Gelanggang Bilangan Bulat Modulo Berorde Pangkat Prima,” Jurnal Matematika, Statistika dan Komputasi, vol. 20, no. 2, pp. 332–339, 2024, doi: 10.20956/j.v20i2.31418
  11. I. Gutman, “Geometric Approach to Degree-Based Topological Indices: Sombor Indices,” 2020
  12. L. R. W. Putra, Z. Y. Awanis, S. Salwa, Q. Aini, and I. G. A. W. Wardhana, “THE POWER GRAPH REPRESENTATION FOR INTEGER MODULO GROUP WITH POWER PRIME ORDER,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 3, pp. 1393–1400, Sep. 2023, doi: 10.30598/barekengvol17iss3pp1393-1400
  13. E. Y. Asmarani, S. T. Lestari, D. Purnamasari, A. G. Syarifudin, S. Salwa, and I. G. A. W. Wardhana, “The First Zagreb Index, The Wiener Index, and The Gutman Index of The Power of Dihedral Group,” CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 7, no. 4, pp. 513–520, May 2023, doi: 10.18860/ca.v7i4.16991
  14. E. Y. Asmarani, A. G. Syarifudin, I. G. A. W. Wardhana, and N. W. Switrayni, “The Power Graph of a Dihedral Group,” EIGEN MATHEMATICS JOURNAL, pp. 80–85, Jan. 2022, doi: 10.29303/emj.v4i2.117
  15. G. Semil @ Ismail, N. H. Sarmin, N. I. Alimon, and F. Maulana, “The First Zagreb Index of the Zero Divisor Graph for the Ring of Integers Modulo Power of Primes,” Malaysian Journal of Fundamental and Applied Sciences, vol. 19, no. 5, pp. 892–900, Oct. 2023, doi: 10.11113/mjfas.v19n5.2980
  16. B. Zainun Yatin, M. R. Gayatri, I. Gede, A. Wisnu Wardhana, B. Desy, and A. Prayanti, “INDEKS HYPER-WIENER DAN INDEKS PADMAKAR-IVAN DARI GRAF KOPRIMA DARI GRUP DIHEDRAL,” Jurnal Riset dan Aplikasi Matematika, vol. 07, no. 02, pp. 138–147, 2023
  17. I. Redžepović, “Chemical applicability of Sombor indices,” Journal of the Serbian Chemical Society, vol. 86, no. 5, pp. 445–457, 2021, doi: 10.2298/JSC201215006R

Last update:

No citation recorded.

Last update:

No citation recorded.