skip to main content

ANALYSIS OF THE EFFECT OF STUART NUMBER AND RADIATION ON VISCOUS FLUID FLOW

*Indira Anggriani  -  Institut Teknologi Kalimantan, Balikpapan, Indonesia
Yolanda Norasia  -  UIN Walisongo, Semarang, Indonesia
Mohamad Tafrikan  -  UIN Walisongo, Semarang, Indonesia
Mohammad Ghani  -  Universitas Airlangga, Surabaya, Indonesia
Basuki Widodo  -  Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Citation Format:
Abstract
Computational fluid dynamics (CFD) is a numerical solution of fluid flow problems built from applied mathematical modeling. The problem of the flow of a viscous fluid which is influenced by a magnetic field gives rise to a boundary layer, from this boundary layer a dimensional building equation is formed. The governing equation is obtained from the continuity equation, momentum equation, and energy equation, then transformed into a non-dimensional equation by substituting non-dimensional variables and transformed into a similarity equation. The numerical solution to this problem uses the Keller Box method. The numerical simulation results show that the Stuart Number increases the velocity profile, while the temperature profile decreases. The effect of radiation parameters on the velocity profile did not change significantly, but the temperature profile decreased.
Fulltext View|Download
Keywords: CFD; Radiation Parameter; Stuart Number; Viscous Fluid.

Article Metrics:

  1. B. Widodo, Pemodelan Matematika, Surabaya: ITSpress, 2012
  2. G. G. A. N. A. Tasos Papanastasiou, Viscous Fluid Flow, 2021
  3. J. B. K. S.I. Rubinow, "Flow of a viscous fluid through an elastic tube with applications to blood flow," Journal of Theoretical Biology, vol. 35, no. 2, pp. 299 - 313, 1972
  4. P. K. Y. A. F. Bhupesh Dutt Sharma, "A Jeffrey-fluid model of blood flow in tubes with stenosis," Colloid Journal, vol. 79, pp. 849 - 856, 2017
  5. B. W. M. R. M. Indira Anggriani, Analysis of the effect of radiation on the physical case in nanofluid, Surabaya, Indonesia: AIP Conference Proceedings, 2022
  6. J. Lienhard, A Heat Transfer Textbook, Courier Dover Publications, 1992
  7. A. S. S. A. K. M. Sanni, "Heat and mass transport of an advection-diffusion viscous fluid past a magnetized multi-physical curved stretching sheet with chemical reaction," Mathematical and Computer Modelling of Dynamical Systems, vol. 30, no. 1, 2024
  8. K. R. M. I. R. J. H. A. I. M. Ahmed Refaie Ali, "Exploring magnetic and thermal effects on MHD bio-viscosity flow at the lower stagnation point of a solid sphere using Keller box technique," Partial Differential Equations in Applied Mathematics, vol. 9, 2024
  9. N. Mohammad, Unsteady Magnetohydrodynamics Convective Boundary Layer Flow Past A Sphere In Viscous and Micropolar Fluids, Malaysia: University Technology Malaysia, 2014
  10. E. A. Abid Kamran, "Numerical outlook of a viscoelastic nanofluid in an inclined channel via Keller box method," International Communications in Heat and Mass Transfer, vol. 137, 2022
  11. N. s. o. m. f. f. v. s. s. w. c. r. a. m. h. t. u. K.-B. method, "Khilap Singh, Alok Kumar Pandey, Manoj Kumar," Propulsion and Power Research, vol. 10, no. 2, pp. 194 - 207, 2021
  12. M. T. M. G. A. A. I. A. Yolanda Norasia, Study the effect Stuart and Prandtl Numbers on Diamond Nano Fluid Flowing Through Cylindrical Surface, Indonesia: Telematika, 2023
  13. d. M.M. Ali, Radiation Effects on MHD Free Convection Flow along Vertical Flat Plate in Presence of Joule Heating and Heat Generation, Procedia Engineering, 2013

Last update:

No citation recorded.

Last update:

No citation recorded.