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Abstract. Consider mixing problems which are often found in Calculus or Differential 

Equation courses. Under some assumptions, this problem can be used to model the 

purification process in a polluted mixture. In this case, the cascading configuration will 

be investigated for modelling the spread of pollution from one mixture to another. There 

are two main problems: finding time needed so the amount of pollutant in mixture inside 

the certain tank does not exceed certain threshold and finding the number of tanks needed 

so that the amount of mixture in the last tank does not exceed certain threshold. The 

solution for the second problem will be simplified by using Stirling approximation, 

which approximates factorial into exponential term. For the first problem, the time 

needed depends on the number of tanks, initial value of the pollutant, the rate of flow, 

and the volume of solution inside the tanks. For the second problem, the number of tanks 

only depends on the initial value of the pollutant. 
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I. INTRODUCTION

Consider mixing problems which are often found in Calculus or Differential Equation 

courses. This problem also can be found in [1], [2], [3]. Consider one tank filled with brine. 

Solution with certain concentration flows into tank at a certain rate. At the same time, the 

solution inside the tank flows outside with a certain rate. This problem can be modified into 

some configuration of tanks: the solution flows outside the upper tank goes inside the lower 

tank, and so on. The illustration can be seen in Figure 2. The problem often asked in this is the 

amount of salt in each of the tanks after a certain time. The assumption that is often used is the 

solution inside the tank will be mixed instantly, so there is no delay time involved when mixing 

happens. Under this assumption, this problem can be used to model the purification process in 

a polluted mixture.  

While [4] already gave one of the approach for this problem and [5] already gave the analytic 

and asymptotic behavior of the solution, in this paper, different perspective of the problem will 

be investigated, especially in the cascading configuration. This model will give us linear 

ordinary differential equation of order 𝑛. Solving this, analytically and numerically, some of 

them can be seen in [6], [7], [8], [9], [10], [11]. 
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The different perspectives are including the time needed to make the pollutant in a certain 

tank below a certain threshold and the number of tanks needed to make the last tank in the 

configuration have pollutant below some threshold any time. These two main problems can 

help water engineer to set up the cascading configuration to purify the lake with the efficient 

amount of cost and energy. 

II. MATHEMATICAL MODEL 

Consider 𝑁 cascading tank mixing problem. Initially, tank 0 (the uppermost tank) is polluted 

with amount of 𝑎 meanwhile other tanks are filled with pure water. Assume that the volume of 

solution inside all tanks is same, denoted by 𝑉. Pure water flows into tank 0 with rate 𝑟 and the 

solution inside the tank flows outside with the same rate, so all volume inside the tank is 

constant. For simplicity, assume that the solution inside every tank is mixed instantly. Let 𝑥𝑛(𝑡) 

be the amount of salt inside the 𝑛th tank after time 𝑡, where 𝑛 ∈ {0, 1, 2, … , 𝑁 − 1}. 

 

Let 𝑐 ≔
𝑟

𝑉
. By the conservation of mass, the rate of amount of pollutant in tank 0 can be 

modelled as the initial value problem. 
𝑑𝑥0(𝑡)

𝑑𝑡
= 0 ⋅ 𝑟 −  

𝑥0(𝑡)

𝑉
⋅ 𝑟 =  −𝑐 ⋅ 𝑥0(𝑡),                       𝑥0(0) = 𝑎. 

Moreover, the model for tank 𝑛, for 𝑛 ∈ {1, 2, … , 𝑁 − 1}, are the following. 

 
Figure 1. Illustration of One Tank Mixing Problem 

 
Figure 2. Illustration of Cascading Tanks Mixing Problem 
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𝑑𝑥𝑛(𝑡)

𝑑𝑡
=

𝑥𝑛−1(𝑡)

𝑉
⋅ 𝑟 −  

𝑥𝑛(𝑡)

𝑉
⋅ 𝑟 =  −𝑐 ⋅ (𝑥𝑛−1(𝑡) − 𝑥𝑛(𝑡)),        𝑥𝑖(0) = 0, 

where 𝑎 denotes the amount of pollutant in the first tank, 𝑉 is volume inside all tanks, and 

𝑟 is the flow rate of the solution between two tanks. 

III. RESULTS 

The amount of pollutant inside every tank can be solved inductively. 

 

Theorem 1 For 𝑛 ∈ {0, 1, 2, … , 𝑁 − 1} and 𝑡 ≥ 0, 𝑥𝑛(𝑡) =
𝑎(𝑐𝑡)𝑛𝑒−𝑐𝑡

𝑛!
. 

Proof: For 𝑛 = 0, the differential form is 
𝑑𝑥0(𝑡)

𝑥0(𝑡)
= −𝑐 𝑑𝑡. Integrating both sides gives 

ln(𝑥0(𝑡)) = −𝑐𝑡 + 𝐾1 ⟺ 𝑥0(𝑡) = 𝐾𝑒−𝑐𝑡 

for some constant 𝐾. Using the information that 𝑥0(0) = 𝑎, it can be obtained that  𝑎 = 𝐾. 

Hence, 𝑥0(𝑡) = 𝑎𝑒−𝑐𝑡. 

Assume that 𝑥𝑘(𝑡) =
𝑎(𝑐𝑡)𝑘𝑒−𝑐𝑡

𝑘!
 holds for some 𝑘 ∈ {1, 2, … , 𝑁 − 1}. Notice this 

calculation. 

𝑑𝑥𝑘(𝑡)

𝑑𝑡
=

𝑎𝑐𝑘𝑡𝑘−1𝑒−𝑐𝑡

𝑘!
−

𝑎𝑐𝑘𝑡𝑛𝑐𝑒−𝑐𝑡

𝑘!
= 𝑐 ⋅ (

𝑎(𝑐𝑡)𝑘−1𝑒−𝑐𝑡

(𝑘 − 1)!
−

𝑎(𝑐𝑡)𝑘𝑒−𝑐𝑡

𝑘!
). 

Therefore, 
𝑑𝑥𝑘(𝑡)

𝑑𝑡
= 𝑐 ⋅ (𝑥𝑘−1(𝑡) − 𝑥𝑘(𝑡)) and 𝑥𝑘(0) = 0 for all 𝑘.        

 

The first problem that will be investigated is the time needed for the certain tank reached 

the certain level of pollutant, which is finding 𝜏 > 0 such that 𝑥𝑛(𝜏) = 𝜀 for some                       

𝑛 ∈ {1, 2, … , 𝑁 − 1} and 𝜀 > 0. In this case, some special "function" needed to have the closed 

form. 

 

Definition 1 [1] Lambert W Function, denoted by 𝑊(𝑥), is the multi-valued inverse of the 

function 𝐸(𝑥) = 𝑥𝑒𝑥, which is 𝑥 = 𝑊(𝑥)𝑒𝑊(𝑥). 

Other use of this function can be seen in [12], [13], [14], [15], [16], [17], [18], [19], [20], 

[21]. With the help of Lamber W Function, the first problem can be solved analytically. 

Theorem 2 The time needed to satisfy 𝑥𝑛(𝜏) = 𝜀 is 𝜏 = −
𝑛

𝑐
⋅ 𝑊 (−

1

𝑛
√

𝜀 𝑛!

𝑎

𝑛
). 

Proof: From the equation 
𝑎(𝑐𝜏)𝑛𝑒−𝑐𝜏

𝑛!
= 𝜀, notice this calculation. 

(𝑐𝜏)𝑛𝑒−𝑐𝜏 =
𝜀 𝑛!

𝑎
⟺ −

𝑐𝜏

𝑛
𝑒−

𝑐𝜏
𝑛 = −

1

𝑛
√

𝜀 𝑛!

𝑎

𝑛

⋅ 

By the Lambert W Function, −
𝑐𝜏

𝑛
= 𝑊 (−

1

𝑛
√

𝜀 𝑛!

𝑎

𝑛
). Therefore, 𝜏 = −

𝑛

𝑐
⋅ 𝑊 (−

1

𝑛
√

𝜀 𝑛!

𝑎

𝑛
).     

Furthermore, if 𝑊𝑘(𝑡) denotes the 𝑘th brance of the Lambert W Function, the solution of 

the inequality 𝑥𝑛(𝑡) > 𝜀 is 𝑡 ∈ (−
𝑛

𝑐
⋅ 𝑊0 (−

1

𝑛
√

𝜀 𝑛!

𝑎

𝑛
) , −

𝑛

𝑐
⋅ 𝑊−1 (−

1

𝑛
√

𝜀 𝑛!

𝑎

𝑛
)). 
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For the second problem, the least number of tanks needed so all pollutant in the last tank 

does not exceed certain value will be investigated, which is finding 𝑁 such that 𝑥𝑁−1(𝑡) < 𝜀 

for 𝑡 > 0. On the other side, the maximum value of pollutant in every tank also can be found. 

Theorem 3 The maximum value of 𝑥𝑛(𝑡) is 𝑀𝑛 =
𝑎𝑛𝑛𝑒−𝑛

𝑛!
 Attained when 𝑡 =

𝑛

𝑐
. 

Proof: Differentiating 𝑥𝑛(𝑡) with respect to 𝑡 gives the following. 

𝑥𝑛
′ (𝑡) =

𝑎𝑐𝑛𝑡𝑛−1𝑒−𝑐𝑡

𝑛!
−

𝑎𝑐𝑘𝑡𝑛𝑐𝑒−𝑐𝑡

𝑛!
=

𝑎𝑐𝑛𝑡𝑛−1𝑒−𝑐𝑡

𝑛!
(𝑛 − 𝑐𝑡). 

The stationary point (the only critical point in this case) is 𝑛 − 𝑐𝑡 = 0 ⟺ 𝑡 =
𝑛

𝑐
. By the first 

derivative test, this critical point yields (global) maximum value. Hence, 

𝑀𝑛 = 𝑥𝑛 (
𝑛

𝑐
) =

𝑎(𝑐⋅
𝑛

𝑐
)

𝑛
𝑒−𝑐⋅𝑛/𝑐

𝑛!
=

𝑎𝑛𝑛𝑒−𝑛

𝑛!
.  

For solving the second problem, a certain approximation is needed to simplify the 

computation. 

Lemma 1 (Stirling Approximation) [22] 𝑛! ≈ √2𝜋𝑛 (
𝑛

𝑒
)

𝑛

. 

Theorem 4 The least number of tanks needed to satisfy 𝑥𝑁−1(𝑡) < 𝜀 is 𝑁 = ⌈
𝑎2

2𝜋𝜀2 + 1⌉. 

Proof: For all 𝑡 > 0 and 𝑁 ∈ ℕ, note that 𝑥𝑁−1(𝑡) ≤ 𝑀𝑛−1 =
𝑎(𝑁−1)𝑁−1𝑒−(𝑁−1)

(𝑁−1)!
. By Stirling 

Approximation, 𝑀𝑁−1 ≈
𝑎

√2𝜋(𝑁−1)
. So, 

𝑎

√2𝜋(𝑁−1)
< 𝜀 ⟺ 𝑁 >

𝑎2

2𝜋𝜀2 + 1. 

Therefore, choose 𝑁 = ⌈
𝑎2

2𝜋𝜀2 + 1⌉ so that the inequality still fulfilled.       

Figure 4 gives an illustration for 𝑎 = 10, 𝑐 = 1, and 𝜀 = 1.  

 
From Figure 3, for the given parameters, the plot of the solution for the amount of pollutant in 

tank 17 (thick black plot) are completely below the threshold 𝑦 = 𝜀 = 1 (dotted red plot), which 

is consistent with the formula in Theorem 4. 

IV. CONCLUSION AND FUTURE RESEARCH DIRECTION 

Two main problems from the mixing problem of cascading tanks have already been 

discussed. This problem can help engineers to design some configuration to purify certain 

configuration of lake. For the first problem, if the configuration is fixed, then the time needed 

can be computed with the help of the formula  𝜏 = −
𝑛

𝑐
⋅ 𝑊 (−

1

𝑛
√

𝜀 𝑛!

𝑎

𝑛
). For the second problem, 

 
Figure 3. Illustration of Theorem 4 for 𝑎 = 10, 𝑐 = 1, and 𝜀 = 1 
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if the configuration can be manipulated, then the route can be designed so that the least amount 

of lake can be solved by the help of the formula 𝑁 = ⌈
𝑎2

2𝜋𝜀2
+ 1⌉. 

 

For the future research direction, other configurations can be considered, such as branched 

tanks illustrated in Figure 4. For this example, solution from tank 1 will be poured into two 

tanks below it with a certain proportion. Finding the amount of pollutant inside each tank will 

be more complicated than before. 

 
Another perspective that can be added to the model is considering the time needed for the 

pollutant to travel from one tank to another. This will modify the model into the system of 

delay differential equations, which can be solved by another method. 
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