skip to main content

FLOWER POLLINATION ALGORITHM (FPA): COMPARING SWITCH PROBABILITY BETWEEN CONSTANT 0.8 AND DOUBLE EXPONENTGUNAKAN DOUBLE EXPONENT

*Yuli Sri Afrianti  -  Kelompok keilmuan Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Bandung, Indonesia
Fadhil Hanif Sulaiman  -  Program studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Bandung, Indonesia
Sandy Vantika  -  Kelompok Keilmuan Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Bandung, Indonesia

Citation Format:
Abstract

Flower Pollination Algorithm (FPA) is an optimization method that adopts the way flower pollination works by selecting switch probabilities to determine the global or local optimization process. The choice of switch probability value will influence the number of iterations required to reach the optimum value. In several previous literatures, the switch probability value was always chosen as 0.8 because naturally the global probability is greater than local. In this article, comparison is studied to determine the switch probability by using the Double Exponent rule. The results are analyzed using Hypothesis Testing to test whether there is a significant difference between the optimization results. The study involved ten testing functions, and results showed that the 0.8 treatment is significantly different from the Double Exponent. However, in general no treatment is better than the other.

Fulltext View|Download
Keywords: Flower Pollination Algorithm; Switch Probability; Double Exponent; Uji Hipotesis; Statistika Inferensi

Article Metrics:

  1. A. M. Nassef, M. A. Abdelkareem, H. M. Maghrabie, and A. Baroutaji, “Review of Metaheuristic Optimization Algorithms for Power Systems Problems,” Sustainability, vol. 15, no. 12, p. 9434, Jun. 2023, doi: 10.3390/su15129434
  2. X. Yang, "Nature-Inspired Optimization Algorithms (Elsevier Insights) (1st ed.)". Elsevier, 2014
  3. X. Yang, Engineering Optimization: An Introduction with Metaheuristic Applications. 2010. [Online]. Available: http://ci.nii.ac.jp/ncid/BB03412264
  4. X.-S. Yang, "Nature-inspired computation and Swarm Intelligence: Algorithms, theory and applications". Academic Press. 2020
  5. Z. A. A. Alyasseri, A. T. Khader, M. A. Al-Betar, M. A. Awadallah, and X. Yang, “Variants of the flower Pollination Algorithm: a review,” in Studies in computational intelligence, 2017, pp. 91–118. doi: 10.1007/978-3-319-67669-2_5
  6. W. Wong and C. I. Ming, "A Review on Metaheuristic Algorithms: Recent Trends, Benchmarking and Applications," 2019 7th International Conference on Smart Computing & Communications (ICSCC), Sarawak, Malaysia, 2019, pp. 1-5, doi: 10.1109/ICSCC.2019.8843624
  7. “Understanding flowers and flowering: an integrated approach,” Choice Reviews Online, vol. 52, no. 04, pp. 52–1978, Nov. 2014, doi: 10.5860/choice.185593
  8. L. Chittka, J. D. Thomson, and N. M. Waser, “Flower constancy, insect psychology, and plant evolution,” The Science of Nature, vol. 86, no. 8, pp. 361–377, Aug. 1999, doi: 10.1007/s001140050636
  9. X.-S. Yang, “Flower pollination algorithm for global optimization,” in Lecture Notes in Computer Science, 2012, pp. 240–249. doi: 10.1007/978-3-642-32894-7_27
  10. M.-U.-N. Khursheed et al., “PV Model parameter estimation using modified FPA with dynamic switch probability and step size function,” IEEE Access, vol. 9, pp. 42027–42044, Jan. 2021, doi: 10.1109/access.2021.3064757
  11. R. N. Mantegna, “Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes,” Physical Review, vol. 49, no. 5, pp. 4677–4683, May 1994, doi: 10.1103/physreve.49.4677
  12. C. Vanaret, “Certified Global MiNima for a benchmark of difficult optimization problems,” arXiv.org, Mar. 22, 2020. https://arxiv.org/abs/2003.09867
  13. R. E. Walpole, Probability and statistics for engineers and scientists. 2012
  14. Modul Praktikum Statistika KK Statistika, FMIPA ITB, 2014
  15. S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika, vol. 52, no. 3–4, pp. 591–611, Dec. 1965, doi: 10.1093/biomet/52.3-4.591

Last update:

No citation recorded.

Last update:

No citation recorded.