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Abstract. Flower Pollination Algorithm (FPA) is an optimization method that adopts 

the way flower pollination works by selecting switch probabilities to determine the 

global or local optimization process. The choice of switch probability value will 

influence the number of iterations required to reach the optimum value. In several 

previous literatures, the switch probability value was always chosen as 0.8 because 

naturally the global probability is greater than local. In this article, comparison is 

studied to determine the switch probability by using the Double Exponent rule. The 

results are analyzed using Hypothesis Testing to test whether there is a significant 

difference between the optimization results. The study involved ten testing functions, 

and results showed that the 0.8 treatment is significantly different from the Double 

Exponent. However, in general no treatment is better than the other.  

Keywords: Flower Pollination Algorithm, Switch Probability, Double Exponent, 

Hypothesis Testing, Inferential Statistics. 

I. INTRODUCTION

Optimization is a method to get the best or optimum result in the form of minimum or 

maximum values while not breaking any restrictions that may exist [1]. Optimization 

problems are often encountered even in cases related to daily activities. Mathematically, the 

optimization problem can be written as follows: 

minimum 

𝑥 ∈ Rd 

subject to 

𝑓𝑖(𝑥), (𝑖 = 1,2, . . . , 𝐼)
𝛷𝑗(𝑥) = 0, (𝑗 = 1,2, . . . , 𝐽)

𝜓𝑘(𝑥) ≤ 0, (𝑘 = 1,2, . . . , 𝐾)

with 𝑓𝑖(𝑥), 𝛷𝑗(𝑥), and 𝜓𝑘(𝑥) are functions of the decision vector 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥d)
T.

Variable 𝑥p with p = 1,2, . . . , d is called the decision variable of 𝑥. Function 𝑓𝑖(𝑥) is called

the objective function, and Rd is the space spanned by 𝑥p also called the decision space. 

Meanwhile, the space formed by the values of the objective function is called the solution 

space. Equation 𝛷𝑗(𝑥) and inequalities 𝜓𝑘(𝑥) are called constraints. As a note, inequalities

𝜓𝑘(𝑥) above can also be constructed as ≥ 0, and objectives can be formulated as maximum.
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Optimization problems can be solved using an optimization algorithm. An algorithm is a 

step-by-step procedure for providing calculations or instructions [2]. Since the discovery of 

heuristic algorithms by Alan Turing during World War II in an attempt to crack the German 

Enigma code, researchers have raced to develop such methods with the majority of them 

drawing inspiration from nature [3]. Some well-known metaheuristic algorithms include the 

Genetic Algorithm (GA) in 1960 which was based on Darwin's theory of evolution and natural 

selection, Particle swarm optimization (PSO) in 1995 which originated from the phenomenon 

of intelligence in flocks of fish and birds, and the Flower Pollination Algorithm (FPA) in 2012 

which was inspired by the pollination process and characteristics of flowering plants [4], [5]. 

In finding the optimum value, heuristic and metaheuristic algorithms do not depend on the 

derivative of the objective function [6]. The optimum solution cannot be guaranteed, but a 

fairly good solution can be obtained. 

 

The FPA algorithm was discovered by Xin-She Yang which generally has better 

performance than similar algorithms, namely Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO). The concept of FPA is based on the flower pollination process and the 

characteristics of flowering plants. The process of flower pollination can be associated with 

the transfer of pollen [7]. In FPA, pollination is divided into two categories that is global and 

local pollination. The appearance of these two categories will be regulated by the switch 

probability (will be abbreviated as p-switch) which in the original research had a constant 

value p = 0.8. Furthermore, based on the FPA concept, the characteristic of flowering plants 

is flower constancy. Flower constancy is a phenomenon in which pollinators limit their visits 

to only a few plant species [8]. In FPA, the concept of flower constancy is defined as the 

probability of pollination that is proportional to the similarity between two flowers [9]. 

Although this algorithm has many advantages, the FPA method also has various 

disadvantages. Therefore, to improve its performance, the researchers made various 

modifications, some of which included combining it with similar algorithms such as GA and 

PSO, changing the step size, or changing the value of the p-switch [10]. Based on the 

background above, in this article we will compare p-switch in FPA that is constant 0.8 versus 

Double Exponent rule and the results will be analyzed using Hypothesis Testing to test 

whether there are significant differences between treatments due to p-switch modifications. 

II. METHODOLOGY 

FPA separates two categories of pollination, namely global and local. Global pollination 

contains biotic forms and methods of cross-pollination. This category is based on the long-

distance nature of pollination. Mathematically, biotic pollinators such as bees will move 

according to the Lévy distribution, which is called Lévy flight. Meanwhile, local pollination 

contains abiotic forms and method of self-pollination. The distance of the pollination is nearby 

and can be modeled using a uniform distribution. Of course, these two categories cannot 

appear simultaneously, therefore the probability of the appearance of these two categories of 

pollination is regulated by a value called p-switch. Naturally, the value of local probabilities 

will be greater than global. The rules of the FPA are as follows: 

1. Biotic and cross pollination are categorized as global pollination with the pollinator's 

movements following Lévy flight, that is, following the Lévy distribution. 
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2. Abiotic and self-pollination are categorized as local pollination which follows a uniform 

distribution. 

3. Flower consistency can be interpreted as the probability of pollination being proportional 

to the similarity between two flowers. 

4. Global and local pollination is regulated by the p-switch value, namely 𝑝 ∈ [0,1], with 

probability of local pollination is significantly greater. 

In this article, the p-switch value in FPA will be compared. This comparation will be based 

on the special properties of the p-switch, that is probability value of local pollination will be 

greater than the global pollination [9]. The first p-switch value is 0.8 which is the 

recommendation from the original research. The second will be bassed on Khursheed et al. 

(2021) [10] and will be named as Double Exponent rule. Double Exponent considered 

produce faster convergence. In this modification, the global pollination probability is made 

such that its value decreases exponentially at each iteration. However, as a note, the p-switch 

value in this study is the probability of global pollination, which is the opposite of reference 

article. For this reason, changes are made which are expressed in the following equation: 

 𝑅 = 𝑝𝑚𝑎𝑥 − (
𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛

𝑁𝑖𝑡𝑒𝑟
) ∗ 𝑡, (1) 

 𝑝𝑡+1 = 1 − 𝑒𝑥𝑝(−𝑒𝑥𝑝(−𝑅)), (2) 

with 𝑅 is called performance index, 𝑁𝑖𝑡𝑒𝑟 is maximum iteration with recommended of 10000, 

𝑡 is number of iterations, 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛 are value of maximum and minimum probability 

with value 1 and 0, and lastly 𝑝𝑡+1 is a value of local probability on the 𝑡 + 1 iterations. 

In this study, FPA will be simulated using various rules in the main reference [9]. There 

are three main rules to start the simulation. The rules are: simulation provisions, various 

objective functions (or just functions), and conditions of the objective functions (including: 

dimension, boundary, and minimum value). Table 1 explains the simulation provisions 

starting from optimization objectives to the number of simulations to be carried out. Next, let 

dimension denoted by variable 𝑑, then various objective functions to be simulated are 

presented in Table 2. 

Table 1. Simulation provisions 

No Provision Explanation 

1 Optimization objective Minimum. 

2 Number of population (n) 25. 

3 Error Tolerance (e) 10−5. 

4 Treatments 0.8 and Double Exponent 

5 Maximum Iterations 200000. 

6 Boundary Algorithm 
Move the solution that is out on the boundary towards 

the boundary. 

7 Mantegna Algorithm 
An approach from the Lévy distribution to global 

pollination. A scale of 0.1 is used. [11] 

8 Number of simulations 50 (with a specified RNG that is 1 to 50). 
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Table 2. Various objective functions to be tested 

No Name Equation 

1 Ackley 𝑓(�⃗�) = −20𝑒𝑥𝑝

[
 
 
 

−0.2√
1

𝑑
∑𝑥𝑖

2

𝑑

𝑖=1
]
 
 
 

− 𝑒𝑥𝑝 [
1

𝑑
∑𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑑

𝑖=1

] + 20 + 𝑒 

2 Dejong 𝑓(�⃗�) = ∑𝑥𝑖
2

𝑑

𝑖=1

 

3 Easom 𝑓(�⃗�) = −𝑐𝑜𝑠(𝑥1)𝑐𝑜𝑠(𝑥2)𝑒𝑥𝑝[−(𝑥1 − 𝜋)2 − (𝑥2 − 𝜋)2] 

4 Griewangk 𝑓(�⃗�) =
1

4000
∑𝑥𝑖

2

𝑑

𝑖=1

− ∏𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
)

𝑑

𝑖=1

+ 1 

5 Michaelwicz 𝑓(�⃗�) =  −∑𝑠𝑖𝑛(𝑥𝑖)

𝑑

𝑖=1

∙ [𝑠𝑖𝑛 (
𝑖𝑥𝑖

2

𝜋
)]

20

 

6 Rastrigin 𝑓(�⃗�) = 10𝑑 + ∑[𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖)]

𝑑

𝑖=1

 

7 Rosenbrock 𝑓(�⃗�) = ∑[(𝑥𝑖 − 1)2 + 100(𝑥𝑖+1 − 𝑥𝑖
2)2]

𝑑−1

𝑖=1

 

8 Schwefel 𝑓(�⃗�) = −∑𝑥𝑖𝑠𝑖𝑛 (√|𝑥𝑖|)

𝑑

𝑖=1

 

9 Yang 𝑓(�⃗�) = (∑|𝑥𝑖|

𝑑

𝑖=1

) 𝑒𝑥𝑝 [−∑𝑠𝑖𝑛(𝑥𝑖
2)

𝑑

𝑖=1

] 

10 Shubert 𝑓(�⃗�) = [∑ 𝑘𝑐𝑜𝑠(𝑘 + (𝑘 + 1)𝑥1)

5

𝑘=1

] ∙ [∑ 𝑘𝑐𝑜𝑠(𝑘 + (𝑘 + 1)𝑥2)

5

𝑘=1

] 

In this simulation, various dimensions and different boundaries are used for each function. 

The boundaries can be defined as follows: suppose d is the dimension of a function f and �⃗� =
(𝑥1, 𝑥2, … , 𝑥𝑑), then the boundary [a, b] is for i = 1,2, … , d then 𝑥𝑖 ∈ [𝑎, 𝑏]. Conditions for 

each function can be seen in Table 3. It is necessary to know that the output of this simulation 
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is the number of iterations to achieve optimum results. For this reason, the original FPA 

flowchart needs to be modified as seen in Figure 2. 

 

Table 3. Conditions for each function 

No Name 
Dimensions 

(d) 
Boundary 

Minimum 

Value  

(fmin) 

Minimum Solution 

(xmin) 

1 Ackley 128 [-5.12, 5.12] 0 (0, 0, …, 0) 

2 Dejong 256 [-5.12, 5.12] 0 (0, 0, …, 0) 

3 Easom 2 [-100, 100] -1 (π, π) 

4 Griewangk 2 [-600, 600] 0 (0, 0) 

5 Michaelwicz 10 [0, π] -9.6601517  

(2.202906, 1.570796, 

1.284992, 1.923058, 

1.720470, 1.570796, 

1.454414, 1.756087, 

1.655717, 1.570796) [12]  

6 Rastrigin 8 [-5.12, 5.12] 0 (0, 0) 

7 Rosenbrock 16 [-5, 5] 0 (1, 1, …, 1) 

8 Schwefel 128 [-500, 500] -53629.8112 (420.9687, …, 420.9687) 

9 Yang 16 [-2π, 2π] 0 (0, 0, …, 0) 

10 Shubert 2 [-10, 10] -186.7309 
Has 18 global 

minimum 
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Figure 2. Modification of the FPA flowchart 

Lastly the results of simulation will be analyzed using Hypothesis Testing [13], [14] to test 

whether there is a significant difference between treatments with p-switch 0.8 and Double 

Exponent (DE). The hypothesis test that will be used here is the t test with unknown but 

unequal variances. Each objective function will be tested by hypothesis: 

 

𝐻0: 𝜇0.8 = 𝜇𝐷𝐸 

𝐻1: 𝜇0.8 ≠ 𝜇𝐷𝐸 . 
 

However, to be able to test this hypothesis, data should be normally distributed. Therefore, 

before testing the hypothesis, the data will be tested first using the Shapiro Wilk test [15]. The 

Shapiro Wilk test has a hypothesis: 

 

𝐻0: 𝑇ℎ𝑒 𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑒𝑠 𝑓𝑟𝑜𝑚 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

𝐻1: 𝑇ℎ𝑒 𝑑𝑎𝑡𝑎 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑐𝑜𝑚𝑒𝑠 𝑓𝑟𝑜𝑚 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
 

In the two tests above, a significance level of 𝛼 = 5% will be used. 

III. RESULTS & DISCUSSION 

The simulation results can be seen in Table 4. Note that, some preliminary results show 

that the success rate for achieving the optimal solution is still quite low. Even in the Rastrigin 

and Schwefel functions, the success rate was 0% for each treatment. This means that not all 
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results obtained can be analyzed further. Therefore, the method will be carried out based on 

the minimum success rate criteria for all treatments that is 100%, 95% and 84%. To achieve 

this rate, dimension of every function that has success rate below 100% will be reduced one 

by one. After simulating with new dimensions and also cleaning out outliers, the results are 

presented in Table 4.  

Tabel 4. Preliminary results written with: mean ± standard deviation (success rate%) 

No Name 0.8 Double Exponent 

1 Ackley 12247.2 ± 996.4 (10%) 6233.6 ± 108.6 (100%) 

2 Dejong 16867.9 ± 1039.7 (100%) 7843 ± 94 (100%) 

3 Easom 195.1 ± 27.9 (100%) 254.3 ± 34.7 (100%) 

4 Griewangk 443.9 ± 88.2 (100%) 603.4 ± 174 (100%) 

5 Michaelwicz NaN ± NaN (0%) 9622.5 ± 2682.1 (4%) 

6 Rastrigin NaN ± NaN (0%) NaN ± NaN (0%) 

7 Rosenbrock 3174.8 ± 336.2 (96%) 3635.4 ± 190.1 (100%) 

8 Schwefel NaN ± NaN (0%) NaN ± NaN (0%) 

9 Yang 94.1 ± 53.8 (100%) 448.1 ± 376.8 (100%) 

10 Shubert 698.6 ± 167.1 (100%) 743.5 ± 471.3 (100%) 

 

Table 5. Results for each criterion written with mean ± standard deviation (success rate%) 

Criteria No 
Name 

(Dimension) 

Treatment 

0.8 Double Exponent 

100% 

1 Dejong (256) 16777.3 ± 827.8 (100%) 7843.4 ± 83.5 (100%) 

2 Easom (2) 196.8 ± 25.5 (100%) 254.9 ± 28.4 (100%) 

3 Griewangk (2) 443.9 ± 88.2 (100%) 603.4 ± 174 (100%) 

4 Yang (16) 83.8 ± 26.3 (100%) 344.6 ± 154.1 (100%) 

5 Shubert (2) 698.6 ± 167.1 (100%) 617.8 ± 284.8 (100%) 

95% 

1 Ackley (18) 1461.9 ± 101.4 (100%) 1180.4 ± 50.1 (100%) 

2 Michalewicz (5) 909 ± 133.5 (98%) 821.8 ± 162.9 (100%) 

3 Rastrigin (5) 1415 ± 212.4 (100%) 1592.2 ± 281.5 (100%) 

4 Rosenbrock (10) 1227.6 ± 95.2 (100%) 1863.4 ± 141 (100%) 

84% 

1 Ackley (24) 2093.8 ± 119.5 (98%) 1472.7 ± 40 (100%) 

2 Michalewicz (6) 1553.8 ± 288.1 (88%) 1755.6 ± 495.2 (100%) 

3 Rastrigin (6) 1949.7 ± 278.4 (92%) 2438.8 ± 429.7 (100%) 

4 Rosenbrock (33) 26593.5 ± 2959.6 (92%) 14449 ± 1529.7 (98%) 

From Table 4, it can be seen that there are several results that are very different. For 

example, in the Dejong (256) function, the mean difference between the two treatments is 

around 8000 or in other words the 0.8 treatment is twice as slow as the Double Exponent. On 

the other hand, note that in the function Yang (16), it can be seen that the 0.8 treatment actually 

makes it three times faster than its opponent. 

As has been discussed, these observations will be tested using hypothesis testing. However, 

before that, it is necessary to first test the normality of the data using the Shapiro Wilk test. 

The results of testing the normality assumption can be seen in Table 5. It can be seen that 26 
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data or 100% of the data are normally distributed at a significance level of 5%. This result is 

considered very good and meets the assumption of normality so it can be continued with 

Hypothesis Testing. 

Table 6. P-value from the Shapiro Wilk Test 

No Name (Dimensions) 

p-value 

0.8 
Double 

Exponent 

1 Dejong (256) 1 1 

2 Easom (2) 1 1 

3 Griewangk (2) 0.282 0.065 

4 Yang (16) 1 1 

5 Shubert (2) 0.46 1 

6 Ackley (18) 0.543 0.344 

7 Michalewicz (5) 1 1 

8 Rastrigin (5) 0.744 0.735 

9 Rosenbrock (10) 1 1 

10 Ackley (24) 1 1 

11 Michalewicz (6) 1 0.355 

12 Rastrigin (6) 1 0.26 

13 Rosenbrock (33) 1 0.124 

 

Table 7. P-value from t test for each function 

Criteria Nama Fungsi �̅�𝟎.𝟖 �̅�𝑫𝑬 p-value 
p-value 

(rounding) 

Conclusion 

(𝜶 = 𝟓%) 

100% 

Dejong (256) 16777.3 7843.4 5.12E-86 0.00 𝜇0.8 > 𝜇𝐷𝐸 

Easom (2) 196.8 254.9 9.31E-18 0.00 𝜇0.8 < 𝜇𝐷𝐸 

Griewangk (2) 443.9 603.4 8.87E-08 0.00 𝜇0.8 < 𝜇𝐷𝐸 

Yang (16) 83.8 344.6 3.21E-19 0.00 𝜇0.8 < 𝜇𝐷𝐸 

Shubert (2) 698.6 617.8 0.091185565 0.09 𝜇0.8 = 𝜇𝐷𝐸 

95% 

Ackley (18) 1461.9 1180.4 4.12E-32 0.00 𝜇0.8 > 𝜇𝐷𝐸 

Michalewicz (5) 909 821.8 0.006833377 0.01 𝜇0.8 > 𝜇𝐷𝐸 

Rastrigin (5) 1415 1592.2 0.000587711 0.00 𝜇0.8 < 𝜇𝐷𝐸 

Rosenbrock (10) 1227.6 1863.4 1.15E-43 0.00 𝜇0.8 < 𝜇𝐷𝐸 

84% 

Ackley (24) 2093.8 1472.7 2.60E-53 0.00 𝜇0.8 > 𝜇𝐷𝐸 

Michalewicz (6) 1553.8 1755.6 0.01974435 0.02 𝜇0.8 < 𝜇𝐷𝐸 

Rastrigin (6) 1949.7 2438.8 7.55E-09 0.00 𝜇0.8 < 𝜇𝐷𝐸 

Rosenbrock (33) 26593.5 14449 3.37E-43 0.00 𝜇0.8 > 𝜇𝐷𝐸 

 

Observe Table 7, based on the p-value produced for each function, it can be seen that at 

the 5% significance level, almost all functions give results that the treatment means of 0.8 and 

Double Exponent are significantly different. However, only the Shubert function states that 

the treatment means of 0.8 is the same as Double Exponent. Therefore, it can be concluded 

that the 0.8 treatment is significantly different from the Double Exponent.  
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Tabel 8. The number of results for each hypothesis test conclusion with 𝛼 = 5% for each 

criterion 

Criteria Conclusion Banyakya hasil 

100% 

𝜇0.8 < 𝜇𝐷𝐸 3 

𝜇0.8 = 𝜇𝐷𝐸 1 

𝜇0.8 > 𝜇𝐷𝐸 1 

95% 

𝜇0.8 < 𝜇𝐷𝐸 2 

𝜇0.8 = 𝜇𝐷𝐸 0 

𝜇0.8 > 𝜇𝐷𝐸 2 

84% 

𝜇0.8 < 𝜇𝐷𝐸 2 

𝜇0.8 = 𝜇𝐷𝐸 0 

𝜇0.8 > 𝜇𝐷𝐸 2 

Tabel 9. The number of results for each hypothesis test conclusion with an 𝛼 = 5%  in total 

No Conclusion Banyakya hasil Percentage 

1 𝜇0.8 < 𝜇𝐷𝐸 7 53.85 % 

2 𝜇0.8 = 𝜇𝐷𝐸 1 7.69 % 

3 𝜇0.8 > 𝜇𝐷𝐸 5 38.46 % 

 

 

Now we will see which treatment is better or in other words has a smaller mean. Tables 8 

and 9 summarize how many of the results meet the conclusions of the hypothesis test. In table 

8 which shows the number of conclusions for each criterion, note that at the 95% and 84% 

criteria the number of means that are larger or smaller is similar that is two function. However, 

at the 100% criterion the treatment of 0.8 is slightly better than with Double Exponent. Overall 

result that are summarized in Table 9, there are no big differences between treatments. In 

other words, even though the two treatments are very different, in general no treatment is 

better than the other. 

IV. CONCLUSION 

The comparison of p-switch between 0.8 by following the Double Exponent rule has been 

carried out. From the 10 functions tested in this article, it can be concluded that the 0.8 

treatment is significantly different from the Double Exponent. However, even though the two 

treatments are very different, in general no treatment is better than the other. 
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