skip to main content

IMPLEMENTATION OF EXTENDED FINITE ELEMENT METHOD IN CRACK PROPAGATION OF CONCRETE

*Muhammad Rafi Purba  -  Program Studi Matematika, Universitas Sumatera Utara, Indonesia
Tulus Tulus  -  Program Studi Matematika, Universitas Sumatera Utara, Indonesia
M.R. Syahputra  -  Program Studi Matematika, Universitas Sumatera Utara, Indonesia
Sawaluddin Sawaluddin  -  Program Studi Matematika, Universitas Sumatera Utara, Indonesia

Citation Format:
Abstract

The Extended Finite Element Method is a numerical solution based on the Finite Element Method (FEM) XFEM has really become a very important generalization of classical finite element techniques, by establishing a mesh independent generalization of classical finite elements to reduce the mesh-dependent shortcomings of the solution. The application of XFEM in crack simulation should improve the modeling of the crack tip environment and also apply to generalized advanced global failure criteria, which is specifically designed to deal with problems in the engineering field Such as the fracture behaviour model. The purpose of this paper is to identify the application of the Extended Finite Element Method to a technical problem, namely fracture behaviour model. The media used is pure boneless concrete modelled with COMSOL Multiphysics 5.6 software by combining stress ratio, lateral strain due to axial loading, concrete density, and crack growth rate. The crack growth process provides initial prolonged growth along with the increase in crack size. In the end, the growth is faster. The reason for this accelerated growth is the stress intensity factor at the crack tip. As the crack grows, the stress intensity factor increases, leading to faster growth. The crack grows until it reaches a critical value, and fracture occurs. The test results obtained the cause of failure: the critical stress intensity is exceeded. See a comparison of crack size and stress cycle as the crack size increases. This accelerated growth is because the growth rate depends on the stress intensity factor at the crack tip, and the stress intensity factor depends on the crack size. As the crack grows, the stress intensity factor increases, leading to faster growth. The crack grows to a critical size, and failure occurs. The results show a relatively strong relationship between increasing crack size and increasing crack growth rate.

Fulltext View|Download
Keywords: Enggineering field; Crack Growth; Crack Propagation; Extended Finiet Element Method

Article Metrics:

  1. A. Bergara, J. I. Dorado, A. Martin-Meizoso, dan J. M. Martínez-Esnaola, “Fatigue crack propagation in complex stress fields: Experiments and numerical simulations using the Extended Finite Element Method (XFEM),” Int. J. Fatigue, vol. 103, hal. 112–121, 2017, doi: 10.1016/j.ijfatigue.2017.05.026
  2. C. Beams, “Modeling the Behavior of CFRP Strengthened Concrete Beams and Columns at,” 2020
  3. W. Demin dan H. Fukang, “Investigation for plastic damage constitutive models of the concrete material,” Procedia Eng., vol. 210, hal. 71–78, 2017, doi: 10.1016/j.proeng.2017.11.050
  4. Y. Wang dan H. Waisman, “An arc-length method for controlled cohesive crack propagation using high-order XFEM and Irwin’s crack closure integral,” Eng. Fract. Mech., vol. 199, no. May, hal. 235–256, 2018, doi: 10.1016/j.engfracmech.2018.05.018
  5. K. Tazoe, H. Tanaka, M. Oka, dan G. Yagawa, “An analysis of half elliptical surface crack propagation phenomenon with smoothed particle hydrodynamics method,” 5th Int. Conf. Part. Methods - Fundam. Appl. Part. 2017, hal. 890–897, 2017
  6. A. Lisjak, D. Figi, dan G. Grasselli, “Journal of Rock Mechanics and Geotechnical Engineering Fracture development around deep underground excavations : Insights from FDEM modelling,” J. Rock Mech. Geotech. Eng., vol. 6, no. 6, hal. 493–505, 2014, doi: 10.1016/j.jrmge.2014.09.003
  7. F. L. Sun dan C. Y. Dong, “Three-dimensional crack propagation and inclusion-crack interaction based on IGABEM,” Eng. Anal. Bound. Elem., vol. 131, no. April, hal. 1–14, 2021, doi: 10.1016/j.enganabound.2021.06.007
  8. X. Xia, F. Chen, X. Gu, N. Fang, dan Q. Zhang, “Interfacial debonding constitutive model and XFEM simulation for mesoscale concrete,” Comput. Struct., vol. 242, hal. 106373, 2021, doi: 10.1016/j.compstruc.2020.106373
  9. A. M. Singh dan M. M. Sharma, “Analysis on Fatigue Crack Initiation and Fatigue Crack Propagation in a Gear,” Smart Moves J. Ijoscience, vol. 4, no. 7, hal. 13, 2018, doi: 10.24113/ijoscience.v4i7.155
  10. R. Brighenti, M. C. S. Moreno, dan E. Barbieri, 8 - Computational techniques for simulation of damage and failure in composite materials. Elsevier Ltd, 2015. doi: 10.1016/B978-0-08-100137-0.00008-0
  11. H. Dirik dan T. Yalçinkaya, “Crack path and life prediction under mixed mode cyclic variable amplitude loading through XFEM,” Int. J. Fatigue, vol. 114, hal. 34–50, 2018, doi: 10.1016/j.ijfatigue.2018.04.026
  12. O. N. Stepanova, L., & Belova, “Estimation of crack propagation direction angles under mixed mode loading in linear elastic isotropic materials by generalized fracture mechanics criteria and by molecular dynamics method Estimation of crack propagation direction angles under mixed mode l,” J. Phys. Conf. Ser., vol. 1096, hal. 012060, 2018, doi: 10.1088/1742-6596/1096/1/012060
  13. S. Liang, Y. Zhu, M. Huang, dan Z. Li, “Simulation on crack propagation vs. crack-tip dislocation emission by XFEM-based DDD scheme,” Int. J. Plast., vol. 114, no. October 2018, hal. 87–105, 2019, doi: 10.1016/j.ijplas.2018.10.010
  14. X. Y. Fang, H. N. Zhang, dan D. W. Ma, “Influence of initial crack on fatigue crack propagation with mixed mode in U71Mn rail subsurface,” Eng. Fail. Anal., vol. 136, no. March, hal. 106220, 2022, doi: 10.1016/j.engfailanal.2022.106220
  15. F. Meray, T. Chaise, A. Gravouil, P. Depouhon, B. Descharrieres, dan D. Nélias, “A novel SAM/X-FEM coupling approach for the simulation of 3D fatigue crack growth under rolling contact loading,” Finite Elem. Anal. Des., vol. 206, no. April, hal. 103752, 2022, doi: 10.1016/j.finel.2022.103752
  16. Y. Zhang, Z. Gao, Y. Li, dan X. Zhuang, “On the crack opening and energy dissipation in a continuum based disconnected crack model,” Finite Elem. Anal. Des., vol. 170, no. June 2019, hal. 103333, 2020, doi: 10.1016/j.finel.2019.103333
  17. Y. Zhang, J. Huang, Y. Yuan, dan H. A. Mang, “Cracking elements method with a dissipation-based arc-length approach,” Finite Elem. Anal. Des., vol. 195, no. March, hal. 103573, 2021, doi: 10.1016/j.finel.2021.103573
  18. L. Di Stasio dan Z. Ayadi, “Finite Element solution of the fiber/matrix interface crack problem: Convergence properties and mode mixity of the Virtual Crack Closure Technique,” Finite Elem. Anal. Des., vol. 167, no. July, hal. 103332, 2019, doi: 10.1016/j.finel.2019.103332
  19. M. R. Javanmardi dan M. R. Maheri, “Extended finite element method and anisotropic damage plasticity for modelling crack propagation in concrete,” Finite Elem. Anal. Des., vol. 165, no. July, hal. 1–20, 2019, doi: 10.1016/j.finel.2019.07.004
  20. A. Jafari, P. Broumand, M. Vahab, dan N. Khalili, “An eXtended Finite Element Method implementation in COMSOL Multiphysics: Solid Mechanics,” Finite Elem. Anal. Des., vol. 202, 2022, doi: 10.1016/j.finel.2021.103707

Last update:

No citation recorded.

Last update:

No citation recorded.