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Abstract. The Extended Finite Element Method is a numerical solution based on the 
Finite Element Method (FEM) XFEM has really become a very important generalization 
of classical finite element techniques, by establishing a mesh independent generalization 
of classical finite elements to reduce the mesh-dependent shortcomings of the solution. 
The application of XFEM in crack simulation should improve the modeling of the crack 
tip environment and also apply to generalized advanced global failure criteria, which is 
specifically designed to deal with problems in the engineering field Such as the fracture 
behaviour model. The purpose of this paper is to identify the application of the Extended 
Finite Element Method to a technical problem, namely fracture behaviour model. The 
media used is pure boneless concrete modelled with COMSOL Multiphysics 5.6 software 
by combining stress ratio, lateral strain due to axial loading, concrete density, and crack 
growth rate. The crack growth process provides initial prolonged growth along with the 
increase in crack size. In the end, the growth is faster. The reason for this accelerated 
growth is the stress intensity factor at the crack tip. As the crack grows, the stress 
intensity factor increases, leading to faster growth. The crack grows until it reaches a 
critical value, and fracture occurs. The test results obtained the cause of failure: the 
critical stress intensity is exceeded. See a comparison of crack size and stress cycle as 
the crack size increases. This accelerated growth is because the growth rate depends on 
the stress intensity factor at the crack tip, and the stress intensity factor depends on the 
crack size. As the crack grows, the stress intensity factor increases, leading to faster 
growth. The crack grows to a critical size, and failure occurs. The results show a 
relatively strong relationship between increasing crack size and increasing crack growth 
rate.  

Keywords: Engineering field, Crack Growth, Crack Propagation, Extended Finite  
Element Method 

I. INTRODUCTION 

Practical application of concrete structures requires extensive research and understanding 
of the response and behavior of various loads. There are many methods of studying the behavior 
of concrete structures, including experimental, numerical, and theoretical [1]. Understanding 
the properties of concrete is essential to avoid errors in concrete structures or repair or 
retrofitting damaged structures and design errors. Due to cost and time limitations in the study 
of concrete performance, finite element analysis numerical methods can accurately simulate 
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the behavior of concrete structures. Finite element analysis used in structural engineering 
determines the overall behavior of a structure by dividing it into simple elements, each with 
well-defined mechanical and physical properties [2]. Many commercial finite element analysis 
software is available, including ABAQUS, COMSOL, ANSYS, NASTRAN, and Hypermesh 
[3]. COMSOL Multiphysics was used because of its strengths, the comprehensive ability of 
"COMSOL Multiphysics" to handle the simulation of multi-field problems and its appeal to 
researchers and engineers that motivated this work to pursue COMSOL's first XFEM 
implementation. Provides a straightforward approach to the proposed XFEM implementation 
using built-in functions provided by COMSOL. Structural analysis using these tools proved to 
be faster and more efficient than experimental analysis [4], [5]. Computational studies of 
fracture networks are of great interest to engineers working with materials that fracture before 
they can be plastically deformed. XFEM Can occur when the material is in the "pre-stressed" 
phase, while these small deformations and strains can cause the material to exceed its critical 
stress. Of great importance to researchers is the prediction of crack nucleation and the total 
dependence of the resulting crack pattern on the material properties [6], [7]. 

Computational methods are increasingly important in modeling cracks in materials. Due to 
the complex nature of fracture mechanics, several phenomenological methods have been 
carried out. The method includes the extended finite element method (X-FEM) or an extended 
method, while this method is included in the Partition of Unity Methods (PUM) [6], [8]. The 
finite element function space is a function of the discontinuous form, which can model the 
placement of one of the cracks or the other side of the crack plane. The main advantage lies 
within each element without continuously interlocking between individual crack meshes. This 
study presents an experimental analysis of the behavior of pure concrete using the COMSOL 
Multiphysics 5.6 [9].  

II. MATHEMATICAL MODEL 

 
 

 

 

 

In the extended finite element method for the numerical solution of elliptic partial 
differential equations, the stiffness matrix represents the system of linear equations that must 
be solved in order to determine an approximate solution to the differential equation.The 
Extended Finite Element Method (XFEM) is a numerical solution, which is based on the Finite 
Element Method (FEM), which is specially designed to deal with problems in engineering 
(engineering) [10]. Like the fracture behavior ini Ilusstration of Linier Triangle Elements 
model in Figure 1, while the element stiffness matrix or [k] can be calculated as follows, 

[𝒌𝒌]{𝒅𝒅} = {𝒓𝒓} 

[𝒌𝒌] = ∫ [𝑩𝑩]𝑇𝑇[𝑬𝑬][𝑩𝑩]𝒕𝒕𝒅𝒅𝑨𝑨 

 
Figure 1. Illustration of Linear Triangle Elements on material 
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where {𝒅𝒅} is the horizontal deformation (translation), {𝒓𝒓} is the load at node, 𝑡𝑡  is the 
thickness of material, 𝑑𝑑 is the density of material, 𝐴𝐴 is the field of material and 𝑣𝑣 represents a 
Poisson ratio. For stiffnes matrix [E] and [B] as follows: 

[𝑬𝑬] =
𝐸𝐸

1 − 𝑣𝑣2
�

1 𝑣𝑣 0
𝑣𝑣 1 0

0 0
1 − 𝑣𝑣

2

� 

where 𝑣𝑣  represents the Poisson ratio and 

 [B]= 1
2𝐴𝐴

 �
𝛽𝛽𝑖𝑖 0 𝛽𝛽𝑗𝑗 0 𝛽𝛽𝑘𝑘 0
0 𝛾𝛾𝑖𝑖 0 𝛾𝛾𝑗𝑗 0 𝛾𝛾𝑘𝑘
𝛾𝛾𝑖𝑖 𝛽𝛽𝑖𝑖 𝛾𝛾𝑗𝑗 𝛽𝛽𝐽𝐽 𝛾𝛾𝑘𝑘 𝛽𝛽𝑘𝑘

�, 𝛽𝛽𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑘𝑘, 𝛽𝛽𝑗𝑗 = 𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑖𝑖, 𝛽𝛽𝑘𝑘 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗 , 𝛾𝛾𝑖𝑖 = 𝑥𝑥𝑘𝑘 −

𝑥𝑥𝑗𝑗 , 𝛾𝛾𝑗𝑗 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑘𝑘 , 𝛾𝛾𝑘𝑘 = 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖. 
 
The path of creeping fracture behavior can be analyzed theoretically by applying different 

fracture mechanics criteria [11]. Crack growth occurs when the maximum tangential stress 
reaches a critical value, and the degree of the crack in the radial direction corresponds to the 
maximum tangential stress [12]. The crack tip stress field is close to the isotropic homogeneous 
linear equation: 
  

COMSOL Multiphysics 5.6 on XFEM separates interfaces, such as cracks or material 
discontinuities, from the back soil net by enriching the finite element space with a unique 
enrichment function based on the unitary method partitioning. Therefore, it eliminates the 
repair steps required in classic movable interface element modeling. In this method, the 
fractured interface topology and evolution are handled using the node distance to the 
appropriate projection point on the interface. COMSOL Multiphysics 5.6 can use the Level Set 
Method (LSM); an extension to higher dimensions with XFEM is straightforward. The special 
treatment of the Galerkin finite element formulation, described in the following section, 
facilitates the separation of the weak form from the standard and enriched parts of the equation, 
which corresponds to the COMSOL Multiphysics modeling structure [13], [14][15]. 

COMSOL is a numerical simulation software based on the finite element method that 
COMSOL Multiphysics 5.6 can use for various applications, ranging from modeling civil 
engineering structures, which laboratory test results can then verify. Standard and Explicit have 
two primary analyses (using an explicit, active finite element formulation) to model dynamic 
events [16]. 

This standard uses the finite element method to implicitly solve any "additional" solution to 
a system of equations for the analysis of solid, shell, and truss models. COMSOL Multiphysics 
can use the program to solve static and dynamic problems and a combination of linear and 
nonlinear problems [17]. 

        COMSOL is a finite element-based computer program used to analyze various 
nonlinear problems, including reinforced concrete beams and prestressed concrete. The 
program's capability is unquestionable, as it can accurately unify different element models, 
bringing them closer to reality and enabling dynamic and cyclic load analysis. COMSOL 
provides solutions for various constitutive equations to solve nonlinear problems, making it 
easier for users to choose the right solution for the model to be analyzed. Important part. 
COMSOL's consistency in software development has resulted in advances in the accuracy of 
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Figure 2. Shape and direction Crack development in the material under test. 

material modeling, geometry, and load modeling to achieve results that are accurate and close 
to the real world [18][19]. 

Essentially, XFEM enriches the finite element space with special enrichment functions 
based on unit partitioning methods, which decouple boundary surfaces (such as cracks or 
material discontinuities) from the background mesh. Thus, the remeshing step required for 
classical finite element modeling of moving interfaces is eliminated. In this method, the 
processing of crack interface topology and its evolution is done by using the distances of nodes 
to corresponding projected points on the interface. Alternatively, XFEM can use the Level Set 
Method (LSM), easily extended to higher dimensions and coupled with XFEM. The specific 
treatment of Galerkin's finite element formulations is detailed in the next section, helping to 
differentiate between the standard weak form and the enriched portion of the governing 
equations that can be used to model structures in COMSOL Multiphysics. [20] 

         In terms of modeling, COMSOL provides various models to choose from. Users can 
choose the model according to the test object's geometry, material, and behavior. 

III. NUMERICAL RESULT AND DISCUSSION 

Before the calculation is carried out, the stress ratio (Young's modulus) is 2.35 × 104 𝑀𝑀𝑀𝑀𝑀𝑀, 
the lateral strain due to axial loading (Poisson ratio) is 0.17, and the Concrete Density (Density) 
is 2.4 𝑔𝑔 𝑐𝑐𝑚𝑚3�  . in the test given a crack growth rate (Paris' law coefficient) of 1.4 × 10−11, 
given the specifications of the material tested in the laboratory with specifications: Length 
100𝑐𝑐𝑚𝑚, Width 50𝑐𝑐𝑚𝑚, Thickness 50𝑚𝑚𝑚𝑚, and Initial crack initiation by 1𝑐𝑐𝑚𝑚. in the test found 
the number of cycles that can be achieved before failure is :  

𝑁𝑁𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓 = 5.431 𝑐𝑐𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑓𝑓𝑀𝑀𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐 
As the crack increases, the stress intensity factor at the crack tip increases. Failure occurs 

when the stress intensity factor exceeds the critical stress intensity of the material, namely 𝐾𝐾𝐼𝐼𝐼𝐼. 
Table 1 shows the pressure range i that makes up the pressure history. The pressure history 

is run repeatedly until failure. 
Table 1. Tabel Stress History 

Cycles Tensile Max Tensile Min Bending Max Bending Min 
100 137,9 Mpa 0,000 Mpa 68,85 Mpa 0,000 Mpa 
125 68,95 Mpa 34,47 Mpa 0,000 Mpa 0,000 Mpa 

 
The number of cycles in the stress history, 𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖, is 125 𝑐𝑐𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. The number of stress 

histories that can be repeated before failure is: 

𝑋𝑋ℎ𝑖𝑖𝑖𝑖𝑖𝑖 =  
𝑁𝑁𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓
𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖

= 43  ℎ𝑓𝑓𝑐𝑐𝑡𝑡𝑡𝑡𝑓𝑓𝑦𝑦 𝑓𝑓𝑐𝑐𝑀𝑀𝑐𝑐𝑡𝑡𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡𝑟𝑟𝑐𝑐 𝑡𝑡𝑡𝑡 𝑓𝑓𝑀𝑀𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐 
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Knowing the growth of cracks, crack growth occurs when the energy change must be equal 
to or exceed the resistance. If the change in energy is less than the change in resistance, cracking 
will not occur. For the case of voltage, use the maximum voltage value. The maximum stress 
intensity factor is compared with 𝐾𝐾𝐼𝐼𝐼𝐼 to determine failure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Stipulations in the crack growth process from Figure 3 can be seen that, at first, the growth 

was prolonged with an increase in the size of the crack. In the end, the growth was faster �𝑑𝑑𝑓𝑓
𝑑𝑑𝑑𝑑
�. 

This accelerated growth is the stress intensity factor at the crack tip a. The stress intensity factor 
increases as the crack grows, leading to faster growth. The crack grows until it reaches a critical 
value, and fracture occurs. 

The test results obtained the cause of failure: the critical stress intensity is exceeded. To see 
the comparison between the crack size and the stress cycle is shown in Figure 2. As the crack 
size increases. This accelerated growth is because the growth rate depends on the stress 
intensity factor at the crack tip, and the stress intensity factor depends on the crack size. The 
stress intensity factor increases as the crack grows, leading to faster growth. The crack grows 
to a critical size, and failure occurs. Figure 2 shows the crack size as a function of the stress 
cycle. The stress intensity factor, K, depends on the size of the crack. The stress intensity 
increases as the crack increases. Once the crack reaches a critical size (i.e., the crack has 
developed to the point where the stress intensity equals the critical stress intensity, 𝐾𝐾𝐼𝐼𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼𝑓𝑓𝑓𝑓 of 
the material), the section fractures synchronously. 

The fracture toughness depends on the thickness of the part. As the thickness increases, the 
fracture toughness decreases until the strain-plane fracture toughness 𝐾𝐾𝐼𝐼𝐼𝐼 

Figure 4 shows the direction of the crack and the shape of the fracture in the material being 
tested. The fracture on the material indicates the end of the analysis. The analysis ends in a 
cycle of 5,431 with a 𝐾𝐾𝑚𝑚𝑓𝑓𝑚𝑚  of 65.95 𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑚𝑚5×10−1 for sampling data from simulation 
results. Can be seen in Appendix 2 Sampling of Crack Growth Results. 

The following numerical simulation results show the application of Finite Element: 
implementation in calculating crack propagation in complex geometries. In this case, the 
loading conditions are quasi-cyclic (quasi-static), and the crack propagation angle is 
determined based on the Stress Intensity Factor (SIF) shown during the simulation;  initial 
geometry initiation with 1575 tetrahedra mesh, crack gap is positioned straight in the center of 

 
Figure 3. Comparison of crack size with stress cycle. 
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the material, where the crack is expected to spread. The fracture equation applied is the Paris 
Fatigue Law with the hypothesis of maximum circumferential stress for the crack propagation 
angle in the simulation. The change in crack length for each iteration is considered a constant 
Δ𝑓𝑓. Numerical results obtained from modeling found on crack development using simulation 
show crack trajectories and contour stress Von-Misses stress 𝜎𝜎𝑣𝑣 at the end of the analysis Figure 
5 illustrates the material condition and direction of the crack trajectory of concrete at the 
2.500 𝑐𝑐𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 iteration has obtained a crack fracture growth of 0.368 𝑐𝑐𝑚𝑚 with a maximum 
pressure of 𝐾𝐾𝑚𝑚𝑓𝑓𝑚𝑚 = 48.67 𝑀𝑀𝑀𝑀𝑀𝑀. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At the end of the simulated three-dimensional crack test, the cracks were found to be nearly 

parallel to the surface, the results confirming flexibility in handling more complex scenarios in 
3D crack analysis problems. The relationship that occurs in 3D crack analysis is generally 
node-to-segment, i.e. there will be no pair of overlapping elements, that is, each element does 
not have more than 1 master segment or slave node to view various crack scenarios. 

IV. CONLUSION 

The crack growth rate is obtained from the calculation results on COMSOL Multiphysics 
5.6. The crack growth rate is shown as a function of the crack length. With a fairly strong 
relationship, the increase in cracks from the beginning cracks increases the crack growth rate. 

 
Figure 4. Comparison of crack size with stress cycle. 

 
Figure 5. Displacement distribution contour on crack path based on 𝜓𝜓 and Von-Misses 

tress 𝜎𝜎𝑣𝑣 
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From the constants used in Paris' Law, the crack growth rate is proportional to the stress 
intensity factor to the power of 3.1. The results show that the stress intensity factor increases 
strongly with crack length, which increases the crack growth rate. 

From the results of this research, the suggestions given by the author for further research are 
to look at the characteristics of crack behavior in other materials that can provide a lower 
propagation rate and examine how the influence of different types of concrete models on the 
crack behavior that occurs. 
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